1,507 research outputs found

    Cardiac Dysfunction, Congestion and Loop Diuretics: their Relationship to Prognosis in Heart Failure

    Get PDF
    Background: Diuretics are the mainstay of treatment for congestion but concerns exist that they adversely affect prognosis. We explored whether the relationship between loop diuretic use and outcome is explained by the underlying severity of congestion amongst patients referred with suspected heart failure. Method and Results: Of 1190 patients, 712 had a left ventricular ejection fraction (LVEF) ≤50 %, 267 had LVEF >50 % with raised plasma NTproBNP (>400 ng/L) and 211 had LVEF >50 % with NTproBNP ≤400 ng/L; respectively, 72 %, 68 % and 37 % of these groups were treated with loop diuretics including 28 %, 29 % and 10 % in doses ≥80 mg furosemide equivalent/day. Compared to patients with cardiac dysfunction (either LVEF ≤50 % or NT-proBNP >400 ng/L) but not taking a loop diuretic, those taking a loop diuretic were older and had more clinical evidence of congestion, renal dysfunction, anaemia and hyponatraemia. During a median follow-up of 934 (IQR: 513–1425) days, 450 patients were hospitalized for HF or died. Patients prescribed loop diuretics had a worse outcome. However, in multi-variable models, clinical, echocardiographic (inferior vena cava diameter), and biochemical (NTproBNP) measures of congestion were strongly associated with an adverse outcome but not the use, or dose, of loop diuretics. Conclusions: Prescription of loop diuretics identifies patients with more advanced features of heart failure and congestion, which may account for their worse prognosis. Further research is needed to clarify the relationship between loop diuretic agents and outcome; imaging and biochemical measures of congestion might be better guides to diuretic dose than symptoms or clinical signs

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    CD98hc facilitates B cell proliferation and adaptive humoral immunity.

    Get PDF
    The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates

    Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation

    Get PDF
    A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active β-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear β-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach

    Successful reduction of intraventricular asynchrony is associated with superior response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) is generally associated with a low to moderate increase of the left ventricular ejection fraction (LVEF). In some patients, however, LVEF improves remarkably and reaches near-normal values. The aim of the present study was to further characterize these so called 'super-responders' with a special focus on the extent of intra- and interventricular asynchrony before and after device implantation compared to average responders.</p> <p>Methods</p> <p>37 consecutive patients who underwent CRT device implantation according to current guidelines were included in the study. Patients were examined by echocardiography before, one day after and six months after device implantation. Pre-defined criterion for superior response to CRT was an LVEF increase > 15% after six months.</p> <p>Results</p> <p>At follow-up, eight patients (21.6%) were identified as super-responders. There were no significant differences regarding age, gender, prevalence of ischemic heart disease and LVEF between average and super-responders at baseline. After six months, LVEF had significantly increased from 26.7% ± 5.7% to 33.1% ± 7.9% (<it>p </it>< 0.001) in average and from 24.0% ± 6.7% to 50.3% ± 7.4% (<it>p </it>< 0.001) in super-responders. Both groups showed a significant reduction of QRS duration as well as LV end-diastolic and -systolic volumes under CRT. At baseline, the interventricular mechanical delay (IVMD) was 53.7 ± 20.9 ms in average and 56.9 ± 22.4 ms in super-responders - representing a similar extent of interventricular asynchrony in both groups (<it>p </it>= 0.713). CRT significantly reduced the IVMD to 20.3 ± 15.7 (<it>p </it>< 0.001) in average and to 19.8 ± 15.9 ms (<it>p </it>= 0.013) in super-responders with no difference between both groups (<it>p </it>= 0.858). As a marker for intraventricular asynchrony, we assessed the longest intraventricular delay between six basal LV segments. At baseline, there was no difference between average (86.2 ± 30.5 ms) and super-responders (78.8 ± 23.6 ms, <it>p </it>= 0.528). CRT significantly reduced the longest intraventricular delay in both groups - with a significant difference between average (66.2 ± 36.2 ms) and super-responders (32.5 ± 18.3 ms, <it>p </it>= 0.022). Multivariate logistic regression analysis identified the longest intraventricular delay one day after device implantation as an independent predictor of superior response to CRT (<it>p </it>= 0.038).</p> <p>Conclusions</p> <p>A significant reduction of the longest intraventricular delay correlates with superior response to CRT.</p

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Neurons of the Dentate Molecular Layer in the Rabbit Hippocampus

    Get PDF
    The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals’ life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections), eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population

    Receptor-Mediated Enhancement of Beta Adrenergic Drug Activity by Ascorbate In Vitro and In Vivo

    Get PDF
    RATIONALE: Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. OBJECTIVES: Extending this work to beta 2 adrenergic systems in vitro and in vivo. METHODS: Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. MEASUREMENTS: Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. MAIN RESULTS: Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3-10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol's effect on heaves and produces a 10-fold enhancement of albuterol activity in "asthmatic" sheep. CONCLUSIONS: Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications
    • …
    corecore