24 research outputs found

    Structure and optical properties of chemically synthesized titanium oxide deposited by evaporation technique

    No full text
    Titanium oxide inorganic ion exchange material was synthesized by hydrolysis with water and ammonia solution. Structural feature of the synthesized titanium oxide was analyzed using X-ray diffraction, X-ray fluorescence and infrared spectrometer technique. Tentative formula of titanium oxide was determined and written as TiO(2) center dot 0.58H(2)O. Titanium oxide films were deposited on glass substrates by means of an electron beam evaporation technique at room temperature from bulk sample. The films were annealed at 250, 350, 450, and 550 degrees C temperatures. Transmittance, reflectance, optical energy gap, refractive index and extinction coefficient were investigated. The transmittance values of 85% in the visible region and 88% in the near infrared region have been obtained for titanium oxide film annealed at 550 degrees C. Kubelka-Munk function was used to evaluate the absorption coefficient which was used to determine the optical band gap. It was found that the optical band gap increases with increasing annealing temperature whereas the refractive index and extinction coefficient decreases. (C) 2009 Elsevier Ltd. All rights reserved

    Antimicrobial Resistance of Salmonella enteritidis and Salmonella typhimurium Isolated from Laying Hens, Table Eggs, and Humans with Respect to Antimicrobial Activity of Biosynthesized Silver Nanoparticles

    No full text
    Salmonella enterica is one of the most common causes of foodborne illness worldwide. Contaminated poultry products, especially meat and eggs are the main sources of human salmonellosis. Thus, the aim of the present study was to determine prevalence, antimicrobial resistance profiles, virulence, and resistance genes of Salmonella Enteritidis (S. enteritidis) and Salmonella Typhimurium (S. Typhimurium) isolated from laying hens, table eggs, and humans, in Sharkia Governorate, Egypt. The antimicrobial activity of Biosynthesized Silver Nanoparticles (AgNPs) was also evaluated. Salmonella spp. were found in 19.3% of tested samples with laying hens having the highest isolation rate (33.1%). S. Enteritidis) (5.8%), and S. Typhimurium (2.8%) were the dominant serotypes. All isolates were ampicillin resistant (100%); however, none of the isolates were meropenem resistant. Multidrug-resistant (MDR) was detected in 83.8% of the isolates with a multiple antibiotic resistance index of 0.21 to 0.57. Most isolates (81.1%) had at least three virulence genes (sopB, stn, and hilA) and none of the isolates harbored the pefA gene; four resistance genes (blaTEM, tetA, nfsA, and nfsB) were detected in 56.8% of the examined isolates. The AgNPs biosynthesized by Aspergillus niveus exhibit an absorption peak at 420 nm with an average size of 27 nm. AgNPs had a minimum inhibitory concentration of 5 µg/mL against S. enteritidis and S. typhimurium isolates and a minimum bactericidal concentration of 6 and 8 µg/mL against S. enteritidis and S. typhimurium isolates, respectively. The bacterial growth and gene expression of S. enteritidis and S. typhimurium isolates treated with AgNPs were gradually decreased as storage time was increased. In conclusion, this study indicates that S. enteritidis and S. typhimurium isolated from laying hens, table eggs, and humans exhibits resistance to multiple antimicrobial classes. The biosynthesized AgNPs showed potential antimicrobial activity against MDR S. enteritidis and S. typhimurium isolates. However, studies to assess the antimicrobial effectiveness of the biosynthesized AgNPs in laying hen farms are warranted

    Adsorptive removal of uranium from water by sulfonated phenol-formaldehyde resin

    No full text
    Adsorption characteristics of a sulfonated phenol-formaldehyde resin (SPR) have been studied for U removal from aqueous solution by means of batch method. Adsorption experiments have been carried out as a function of contact time, solution/adsorbent ratio, particle size and pH. Adsorption isotherm has been evaluated by changing adsorbent dosage in the range of 0.04-80 g/L at an initial uranyl nitrate concentration of 0.05 mol/L. The enormous adsorption capacity of 0.29 mol/g estimated from the plateau region of the S shaped isotherm is well comparable the Langmuir capacity of 0.31 mol/g. Equilibrium data are also adequately well described by the Freundlich and the Dubinin-Radushkevich (D-R) isotherm equations. The parameters of the isotherms and pH dependency of distribution coefficients (K-D) indicate that polymeric uranyl chains form on bidentate surface complex as a result of solute-solute interactions on the adsorbent surface. Both desorption and elution studies show that uranyl chains are irreversibly bounded on the SPR. Kinetic curves having a fast initial part followed by a slower process well fit both McKay model based on two-resistance diffusion and Nernst-Plank model with single diffusion coefficient. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 3793-3801, 200
    corecore