19 research outputs found

    Exploring novel medical applications for commonly used veterinary drug (tilmicosin antibiotic)

    No full text
    Tilmicosin (TMC) is a semi synthetic macrolide antibiotic of tylosin derivatives commonly used by veterinaries, has been shown to reveal beneficial pharmacological activities. In the current study, the potential wound healing activity, Anti-oxidant effect (ulcer and hepatoprotective) were investigated. Anti-inflammatory, antipyretic, analgesic (central and peripheral), hypnotic and antispasmodic activity were also screened. This study included adult both sexes of rats (200-250 gm), mice (20-25 gm) and adult rabbits. Experimental wound was induced on the anterior-dorsal side of each rat whereas, ulcer induced by ethanol causing mucosal damage in rats. The oral anti-inflammatory induced through formalin producing edema, antipyretic (Brewer’s yeast induced hyperthermia) and analgesic (writhing test, hot plate method, tail immersion method) while hypnotic effects induced through thiopental sodium. Anti-spasmodic effect on isolated organs (intestinal and uterine muscles) using new method of Modular Single Chamber Organ Bath were carried out on experimental animals. Tilmicosin antibiotic at different two doses of 20 and 40 mg/kg b.wt., has an important role in treatment of ulcer (cytoprotective effect) and improvement the wound healing processes besides anti-inflammatory, analgesics, and anti-pyretic effects. Tilmicosin revealed also hypnotic and intestinal anti-spasmodic effects but showed Pharmacovigilence hepatotoxic effect through the histopathological studies which revealed sever hepatic damage especially at larger dose

    Antimicrobial resistance and virulence factors in chicken-derived E. coli isolates

    No full text
    A total of 180 samples were taken from diseased and freshly dead broiler chickens of various ages from various farms in El-Minya and Beni-Suef governorates and transferred to the lab for bacterial isolation and further molecular examination targeting E. coli. The results showed that 91 of 180 samples (50.6%) tested positive for E. coli. The   prevalence of some in vitro virulence markers of avian pathogenic E. coli was Congo red binding (CRB) (95.6% positivity) and moderate to strong biofilm production (92%). On 5% sheep blood agar, (67%) of examined isolates showed alpha hemolysis, while (27%) showed gamma hemolysis  and (5.5%) showed beta hemolysis. All the tested isolates exhibited a multidrug resistance (MDR) pattern. E. coli isolates demonstrated various degrees of resistance against, amoxicillin–sulbactam (82%) followed by streptomycin (76%), cefotaxime and trimethoprim/sulphamethoxazole (73%), tetracycline and ciprofloxacin (68%), chloramphenicol (66%), cefaclor (65%), cefixime (62%) respectively. Five MDR selected isolates were examined using PCR. The intended virulence genes were iss, tsh, fimH, and iroN genes. The genes iss and fimH were detected in all of the isolates investigated, whereas iroN was present in four isolates but tsh was found in only one isolate

    Nickel-gallate metal–organic framework as an efficient antimicrobial and anticancer agent: in vitro study

    No full text
    Abstract Gallic acid is a natural antioxidant present in many plants such as tea, sumac, gallnut and other plants. This naturally occurring gallic acid is known to exhibit auto-oxidation under certain conditions, generating several reactive oxygen species (ROS) including superoxides, hydroxyls and hydrogen peroxide radicals that plays key roles in its antimicrobial activity. Here, we demonstrate that incorporating gallic acid as a linker in Ni-based metal organic frameworks (Ni-gallate MOFs) produces mesoporous nanostructures with antimicrobial and anticancer activity. The synthesized Ni-gallate MOFs have shown antibacterial activity against both Gram-positive and Gram-negative bacteria, and antifungal activity against two different strains of fungi species. Furthermore, Ni-gallate MOFs have shown a significant cytotoxic effect on rhabdomyosarcoma (RMS) cells, compared to the standard anticancer drug, Doxorubicin. In this study, the Ni-gallate MOF nanostructures were characterized using scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infra-red (FTIR), and Brunauer–Emmett–Teller (BET) method for surface area. The antibacterial and antifungal activity of gallic acid-based mesoporous framework nanostructure were tested, suggesting that Ni-gallate MOF has a dual anticancer and antimicrobial activity

    In Vitro and In Vivo Evaluation of the Effectiveness and Safety of Amygdalin as a Cancer Therapy

    No full text
    Cancer is one of the most important causes of death worldwide. Several studies have shown the efficacy of apricot kernel seed as a cancer therapy due to the presence of amygdalin. These studies have demonstrated amygdalin’s cytotoxicity, antioxidant activity, and apoptosis in vitro using human cancer cell lines. However, no studies have demonstrated their cancer activity in vivo. The aim of this study is to develop an amygdalin-loaded niosomes (ALN) gel formulation as a drug delivery system in order to investigate the selectivity, efficacy, and toxicity of amygdalin as a cancer therapy in vivo using the 7,12-dimethylbenz (a) anthracene (DMBA) carcinoma rat model. Based on pre-formulation studies, the ALN formulation composed of Tween 60: cholesterol: dihexadecyl phosphate in a molar ratio of 1:2:0.1 was chosen as an optimum formulation because it has a percent of EE of 66.52% with a particle size of 269.3 nm and a reflux of 3.54 µg.cm−2.h−1. The ALN gel formulation was integrated into carbopol gel to be evaluated in vivo. Compared to DMBA control, treatment with ALN gel showed a reduction in the carcinoma volume and in the hyperplasia of the epidermis with no signs of edema. In conclusion, the ALN gel formulation could be an efficient cancer therapy

    Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd2+ and Ni2+) from aqueous solutions with Antimicrobial Investigation

    No full text
    Abstract Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one

    Synthesis of Carvacrol-Loaded Invasomes Nanoparticles Improved Acaricide Efficacy, Cuticle Invasion and Inhibition of Acetylcholinestrase against Hard Ticks

    No full text
    Carvacrol is a monoterpenoid phenol found in many essential oils that has antibacterial, antifungal and antiparasitic activities. Drug loaded-invasome systems are used to deliver drugs utilizing nanoparticles to improve bioavailability, efficacy, and drug release duration. As a result, the present study developed carvacrol-loaded invasomes and evaluated their acaricidal effect against Rhipicephalus annulatus (cattle tick) and Rhipicephalus sanguineus (dog tick). Carvacrol loaded-invasome (CLI) was prepared and characterized using UV/Vis spectrophotometer, zeta potential measurements, Scanning Transmission Electron Microscopy (STEM), Fourier Transform Infrared (FT-IR) Spectroscopy, and Differential Scanning Calorimetry Analysis. CLI (5%) induced significant mortality (100%) in R. annulatus adult ticks with LC50 of 2.60%, whereas the LC50 of pure carvacrol was 4.30%. Carvacrol and CLI were shown to have a significant larvicidal action on both tick species, with LC50s of 0.24 and 0.21% against R. annulatus and 0.27 and 0.23% against R. sanguineus, respectively. Carvacrol and CLI (5%) induced significant repellent activities for 24 h against R. annulatus and R. sanguineus, as evidenced by the rod method and the petri-dish selective area choice method, respectively. High-performance liquid chromatography (HPLC) demonstrated that the CLI form had 3.86 times the permeability of pure carvacrol. Moreover, carvacrol and CLI inhibited acetylcholinesterase activity and decreased glutathione and malonedealdehyde levels in the treated ticks. In conclusion, invasomes significantly improved adulticidal and repellency activities of carvacrol against both tick species

    Therapeutic Potential of Zeolites/Vitamin B12 Nanocomposite on Complete Freunds Adjuvant-Induced Arthritis as a Bone Disorder: In Vivo Study and Bio-Molecular Investigations

    No full text
    Rheumatoid arthritis (RA) is a long-term autoimmune disease. As nanotechnology has advanced, a growing number of nanodrugs have been used in the treatment of RA due to their unique physical and chemical properties. The purpose of this study was to assess the therapeutic potential of a novel zeolite/vitamin B12 nanocomposite (Nano ZT/Vit B12) formulation in complete Freunds adjuvant (CFA)-induced arthritis. The newly synthesized Nano ZT/Vit B12 was fully characterized using various techniques such as XRD, FT-IR, BET analysis, HERTEM, SEM, practical size, zeta potential, XRF, and EDX. The anti-arthritic, anti-inflammatory, and antioxidant activities as well as the immunomodulation effect of Nano ZT/Vit B12 on the CFA rat model of arthritis were examined. Histopathologic ankle joint injuries caused by CFA intrapedal injection included synovium hyperplasia, inflammatory cell infiltration, and extensive cartilage deterioration. The arthritic rats Nano ZT/Vit B12 supplementation significantly improved these effects. Furthermore, in arthritic rats, Nano ZT/Vit B12 significantly reduced serum levels of RF and CRP, as well as the levels of IL-1 beta, TNF-alpha, IL-17, and ADAMTS-5, while increasing IL-4 and TIMP-3 levels. Nano-ZT/Vit B12 significantly declined the LPO level and increased antioxidant activities, such as GSH content and GST activity, in the arthritic rats. In arthritic rats, Nano ZT/Vit B12 also reduced TGF-beta mRNA gene expression and MMP-13 protein levels. Collectively, Nano ZT/Vit B12 seems to have anti-arthritic, anti-inflammatory, and antioxidant properties, making it a promising option for RA in the future.Funding Agencies|King Salman Center for Disability Research [KSRG-2022-047]</p

    Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats

    No full text
    International audienceAcrylamide (AA), an industrial monomer, may cause multi-organ toxicity through induction of oxidative stress and inflammation. The antioxidant properties of thymoquinone (TQ), an active constituent of Nigella sativa, have been established before. Theaim of the current study was to assess the protective effects of TQ against AA-induced toxicity in rats. Forty-eight male Wistarrats were divided into six groups each of eight rats. The first group acted as a negative control and received normal saline. GroupsII and III were administered TQ orally at doses of 10 and 20 mg/kg b.wt., respectively, for 21 days. The four group received AA(20 mg/kg b.wt.) for 14 days. The five and six groups were given TQ at either dose for 21 days, starting seven days before AAsupplementation (for 14 days). Acrylamide intoxication was associated with significant (p < 0.05) increases in serum levels ofliver injury biomarkers (alanine transferase, aspartate transferase, and alkaline phosphatase), renal function products (urea,creatinine), DNA oxidative damage biomarker (8-oxo-2â€Č-deoxyguanosine), and pro-inflammatory biomarkers (interleukin-1ÎČ,interleukin-6, and tumor necrosis factor-α). Moreover, AA intoxication was associated with increased lipid peroxidation andnitric oxide levels, while reduced glutathione concentration and activities of glutathione peroxidase, superoxide dismutase, andcatalase in the liver, kidney, and brain. TQ administration normalized AA-induced changes in most serum parameters andenhanced the antioxidant capacity in the liver, kidney, and brain tissues in a dose-dependent manner. In conclusion, the currentexperiment showed that TQ exerted protective and antioxidant activities against AA-induced toxicity in mice
    corecore