333 research outputs found

    A Sensitive Faraday Rotation Setup Using Triple Modulation

    Get PDF
    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air were tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/{\lambda}^{2} dependence was observed.Comment: 4 pages, 2 figures Updated version for RSI submissio

    Reconstructing the Inflaton Potential

    Get PDF
    A review is presented of recent work by the authors concerning the use of large scale structure and microwave background anisotropy data to determine the potential of the inflaton field. The importance of a detection of the stochastic gravitational wave background is emphasised, and some preliminary new results of tests of the method on simulated data sets with uncertainties are described. (Proceedings of ``Unified Symmetry in the Small and in the Large'', Coral Gables, 1994)Comment: 13 pages, uuencoded postscript file with figures included (LaTeX file available from ARL), FERMILAB-Conf 94/189

    Selected Life-History Observations on the Cayman Gambusia, Gambusia xanthosoma Greenfield, 1983 (Poeciliidae)

    Get PDF
    The Cayman gambusia (Gambusia xanthosoma Greenfield, 1983) is an uncommon species within the G. punctata species group, endemic to North Sound, Grand Cayman Island, BWI. Since the original description (Greenfield 1983) only phylogenetic information has been published and little is known of its habitat, feeding ecology, or reproductive life history (Wildrick and Greenfield 1985, Rauchenberger 1988). Originally described from a brackish-water (30 psu) mosquito control ditch, the species also occurred throughout marine mangrove habitat and inland saline ponds adjacent to North Sound, Grand Cayman Island. Here we present information on the habitat, diet, reproduction, life history, and parasites of the Cayman gambusia

    Characterization of pysio-chemical properties of novel one stop chemical method in preparations of copper nanofluids and possible explanations

    Get PDF
    Nanofluid is a dilute suspension containing particles in nanometer sized which are dispersed in the base fluid like ethylene glycol or water. Nanofluid is one of the crucial discovery in modern science which found to be having better thermal properties compared with conventional fluids like water or ethylene glycol thus makes it ideal to be applied and utilized in many areas in heat transfer area such as cooling, utilized as fluid for heat echangers and etc. Besides, the nanofluid with the improved thermal properties could solve the problem faced by various industries in the area of heat transfer. For example, in the semiconductor industry, the needs of superior cooling coolant are very crucialJn this paper, presents about preparation of copper nanofluid using novel one stop chemical method by reducing copper sulphate pentahydrate using reduction agent which is sodium hypophosphite in ethylene glycol as base fluids. The obtained nanofluid by using this novel one stop method is more stable besides cheaper and faster compared with two stop method whereby in the two step method, the production of the nanoparticles and the nanofluids are isolated. The process of drying, storage and transportation of the nanoparticles that takes place in two step method have cause the agglomeration and sedimentation of the nanofluids. As the result, the agglomeration could cause the settlement and clogging in the microchannel besides reduce the thermal conductivity. Therefore in the novel one stop method the production of the nanoparticles and the nanofluids are combined and not separated to avoid the process of drying, storage and transportation of nanoparticles. Meanwhile the nanofluid that obtained were analyzed using Transmission Electron Microscopy (TEM), UV-Vis Spectrophotometer, Viscometer and Fourier Transform Infared Spectroscopy (FTIR). The effect and influences of pH and dilution to the reaction rate and properties of nanofluid were also investigated

    Annotating patient clinical records with syntactic chunks and named entities: the Harvey corpus

    Get PDF
    The free text notes typed by physicians during patient consultations contain valuable information for the study of disease and treatment. These notes are difficult to process by existing natural language analysis tools since they are highly telegraphic (omitting many words), and contain many spelling mistakes, inconsistencies in punctuation, and non-standard word order. To support information extraction and classification tasks over such text, we describe a de-identified corpus of free text notes, a shallow syntactic and named entity annotation scheme for this kind of text, and an approach to training domain specialists with no linguistic background to annotate the text. Finally, we present a statistical chunking system for such clinical text with a stable learning rate and good accuracy, indicating that the manual annotation is consistent and that the annotation scheme is tractable for machine learning

    Fluctuations and Bubble Dynamics in First-Order Phase Transitions

    Get PDF
    We numerically examine the effect of thermal fluctuations on a first-order phase transition in 2+1 dimensions. By focusing on the expansion of a single bubble we are able to calculate changes in the bubble wall's velocity as well as changes in its structure relative to the standard case where the bubble expands into a homogeneous background. Not only does the wall move faster, but the transition from the symmetric to the asymmetric phase is no longer smooth, even for a fairly strong transition. We discuss how these results affect the standard picture of electroweak baryogenesis.Comment: Latex, 30 pages, 11 ps figures, short discussion added in conclusions and minor clarifications, accepted to Phys Rev

    Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

    Get PDF
    State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed

    Hydrodynamic Detonation Instability in Electroweak and QCD Phase Transitions

    Full text link
    The hydrodynamic stability of deflagration and detonation bubbles for a first order electroweak and QCD phase transition has been discussed recently with the suggestion that detonations are stable. We examine here the case of a detonation more carefully. We find that in front of the bubble wall perturbations do not grow with time, but behind the wall modes exist which grow exponentially. We briefly discuss the possible meaning of this instability.Comment: 12 pages, 3 figures available on request, Latex, FERMILAB--PUB--93/098--

    Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots

    Get PDF
    We report a detailed study on APbX3 (A=Formamidinium (FA+), Cs+; X=I-, Br-) perovskite quantum dots (PQDs) with combined A- and X-site alloying that exhibit, both, a wide bandgap and high open circuit voltage (Voc) for the application of a potential top cell in tandem junction photovoltaic (PV) devices. The nanocrystal alloying affords control over the optical bandgap and is readily achieved by solution-phase cation and anion exchange between previously synthesized FAPbI3 and CsPbBr3 PQDs. Increasing only the Br- content of the PQDs widens the bandgap but results in shorter carrier lifetimes and associated Voc losses in devices. These deleterious effects can be mitigated by replacing Cs+ with FA+, resulting in wide bandgap PQD absorbers with improved charge-carrier mobility and PVs with higher Voc. Although further device optimization is required, these results demonstrate the potential of FA1–xCsx)Pb(I1–xBrx)3 PQDs for wide bandgap perovskite PVs with high Voc
    • …
    corecore