1,207 research outputs found

    Structural insight into the TRIAP1/PRELI-like domain family of mitochondrial phospholipid transfer complexes

    Get PDF
    The composition of the mitochondrial membrane is important for its architecture and proper function. Mitochondria depend on a tightly regulated supply of phospholipid via intra-mitochondrial synthesis and by direct import from the endoplasmic reticulum. The Ups1/PRELI-like family together with its mitochondrial chaperones (TRIAP1/Mdm35) represent a unique heterodimeric lipid transfer system that is evolutionary conserved from yeast to man. Work presented here provides new atomic resolution insight into the function of a human member of this system. Crystal structures of free TRIAP1 and the TRIAP1–SLMO1 complex reveal how the PRELI domain is chaperoned during import into the intermembrane mitochondrial space. The structural resemblance of PRELI-like domain of SLMO1 with that of mammalian phoshatidylinositol transfer proteins (PITPs) suggest that they share similar lipid transfer mechanisms, in which access to a buried phospholipid-binding cavity is regulated by conformationally adaptable loops

    eIF4E3 forms an active eIF4F complex during stresses (eIF4FS) targeting mTOR and re-programs the translatome.

    Get PDF
    The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation

    Supercapacitive Admittance Tomoscopy

    Get PDF
    A sensor for measuring adsorption on a substrate has been designed including a contactless detection scheme, called supercapacitive admittance tomoscopy (SCAT). The sensor comprises a thin dielectric layer with two parallel band electrodes on the one side and a chemically modified surface on the other onto which the adsorption of molecules occurs. Upon application of a high frequency ac voltage between the two electrodes, a capacitive coupling is established across the dielectric layer, and the admittance measured depends on the surface state of the chemically modified interface. On the basis of this principle, a flow sensor has been developed to measure sensorgrams to follow the dynamics of the adsorption and has been tested for the adsorption of IgG on the modified surface

    Size Dependence of Investigations of Hot Electron Cooling Dynamincs in Metal/Adsorbates Nanoparticles

    Get PDF
    The size dependence of electron-phonon coupling rate has been investigated by femtosecond transient absorption spectroscopy for gold nanoparticles (NPs) wrapped in a shell of sulfate with diameter varying from 1.7 to 9.2 nm. Broad-band spectroscopy gives an overview of the complex dynamics of nonequilibrium electrons and permits the choice of an appropriate probe wavelength for studying the electron-phonon coupling dynamics. Ultrafast experiments were performed in the weak perturbation regime (less than one photon in average per nanoparticle), which allows the direct extraction of the hot electron cooling rates in order to compare different NPs sizes under the same conditions. Spectroscopic data reveals a decrease of hot electron energy loss rates with metal/adsorbates nanosystem sizes. Electron-phonon coupling time constants obtained for 9.2 nm NPs are similar to gold bulk materials (a. 1 ps) whereas an increase of hot electron cooling time up to 1.9 ps is observed for sizes of 1.7 nm. This is rationalized by the domination of surface effects over size (bulk) effects. The slow hot electron cooling is attributed to the adsorbates-induced long-lived nonthermal regime, which significantly reduces the electron-phonon coupling strength (average rate of phonon emission)

    Role of Adsorbates on Dynamics of Hot-Electron (type I and II) Thermalization within Gold Nanoparticles

    Get PDF
    Early stages of hot-electron thermalization in small gold nanoparticles wrapped in an adsorbates shell have been investigated by femtosecond transient absorption spectroscopy. Type-I hot electrons thermalize in 800 fs (to form type-II hot electron) either by scattering with cold conduction band electrons or by chemical interface scattering with adsorbates shell. Type-II hot electrons redistribute the excess energy toward the lattice via electron–phonon coupling in 1.8–3.6 ps depending on pump fluence. The electron–phonon coupling process (type II hot electron) is retarded because of the incomplete internal thermalization of type-I hot electron at early times due to the presence of adsorbates

    Modulation of the Work Function in Layer-by-Layer Assembly of Metal Nanoparticles and Poly-l-lysine on Modified Au Surfaces

    Get PDF
    Layered surface: Particles with a diameter smaller than 10 nm can be organised in ordered multilayers that feature regular fluctuations of the work function. While the amplitude of the modulation is determined by the properties of the polypeptide and the layer-by-layer ordering, the work function of the nanoparticle-terminated surface is determined by the nature of the metal particle and its surface functionalisation (see graphic)

    Nanomosaic Network for the Detection of Proteins Without Direct Electrical Contact

    Get PDF
    A nanomosaic network of metallic nanoparticles for the detection of ultralow concentrations of proteins is reported, which uses two planar microelectrodes embedded in a microchip that permit generation of capacitive coupling to the nanomosaic system without the need for direct electrical contact with the channel. By tailoring the microchannel surface using a sandwich configuration of polyethylene terephthalate/gold nanoparticles/poly(L-lysine), the surface charge can be modified following biomolecular interactions and monitored using a noncontact admittance technique. This nanodevice system behaves like a tunable capacitor and can be employed for the detection of any kind of molecule. The femtomolar detection of an anionic protein, such as b- lactoglobulin in phosphatebuffered saline medium, is taken as an example

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.EUROfusion Consortium 63305

    Size-Selective Separation of Gold Nanoparticles using Isoelectric Focusing Electrophoresis (IEF)

    Get PDF
    Isoelectric focusing in a polyacrylamide pH gradient gel is used to analyze the size distribution of gold nanoparticles synthesized by a chemical route with mercaptosuccinic acid as a ligand. The isoelectric point of the nanoparticles is shown to be size dependent, allowing fractionation by electrophoresis. Each fraction has a narrow size distribution with a standard deviation lower than 0.4 nm

    Low number of neurosecretory vesicles in neuroblastoma impairs massive catecholamine release and prevents hypertension

    Get PDF
    Introduction: Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system. It produces and releases metanephrines, which are used as biomarkers for diagnosis in plasma and urine. However, plasma catecholamine concentrations remain generally normal in children with NB. Thus, unlike pheochromocytoma and paraganglioma (PHEO/PGL), two other non-epithelial neuroendocrine tumors, hypertension is not part of the usual clinical picture of patients with NB. This suggests that the mode of production and secretion of catecholamines and metanephrines in NB is different from that in PHEO/PGL, but little is known about these discrepancies. Here we aim to provide a detailed comparison of the biosynthesis, metabolism and storage of catecholamines and metanephrines between patients with NB and PHEO. Method: Catecholamines and metanephrines were quantified in NB and PHEO/PGL patients from plasma and tumor tissues by ultra-high pressure liquid chromatography tandem mass spectrometry. Electron microscopy was used to quantify neurosecretory vesicles within cells derived from PHEO tumor biopsies, NB-PDX and NB cell lines. Chromaffin markers were detected by qPCR, IHC and/or immunoblotting. Results: Plasma levels of metanephrines were comparable between NB and PHEO patients, while catecholamines were 3.5-fold lower in NB vs PHEO affected individuals. However, we observed that intratumoral concentrations of metanephrines and catecholamines measured in NB were several orders of magnitude lower than in PHEO. Cellular and molecular analyses revealed that NB cell lines, primary cells dissociated from human tumor biopsies as well as cells from patient-derived xenograft tumors (NB-PDX) stored a very low amount of intracellular catecholamines, and contained only rare neurosecretory vesicles relative to PHEO cells. In addition, primary NB expressed reduced levels of numerous chromaffin markers, as compared to PHEO/PGL, except catechol O-methyltransferase and monoamine oxidase A. Furthermore, functional assays through induction of chromaffin differentiation of the IMR32 NB cell line with Bt2cAMP led to an increase of neurosecretory vesicles able to secrete catecholamines after KCl or nicotine stimulation. Conclusion: The low amount of neurosecretory vesicles in NB cytoplasm prevents catecholamine storage and lead to their rapid transformation by catechol O-methyltransferase into metanephrines that diffuse in blood. Hence, in contrast to PHEO/PGL, catecholamines are not secreted massively in the blood, which explains why systemic hypertension is not observed in most patients with NB
    corecore