39 research outputs found

    Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities

    Get PDF
    Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs elec- trophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca2+ handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and fol- lowing drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by ICaL reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca2+ accumulation, at fast pacing, caused by large L-type calcium current and small Na+/Ca2+ exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations

    Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop

    Get PDF
    Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting

    Interventricular Differences in β‐Adrenergic Responses in the Canine Heart: Role of Phosphodiesterases

    Get PDF
    Background RV and LV have different embryologic, structural, metabolic, and electrophysiologic characteristics, but whether interventricular differences exist in β‐adrenergic (β‐AR) responsiveness is unknown. In this study, we examine whether β‐AR response and signaling differ in right (RV) versus left (LV) ventricles. Methods and Results Sarcomere shortening, Ca2+ transients, ICa,L and IKs currents were recorded in isolated dog LV and RV midmyocytes. Intracellular [cAMP] and PKA activity were measured by live cell imaging using FRET‐based sensors. Isoproterenol increased sarcomere shortening ≈10‐fold and Ca2+‐transient amplitude ≈2‐fold in LV midmyocytes (LVMs) versus ≈25‐fold and ≈3‐fold in RVMs. FRET imaging using targeted Epac2camps sensors revealed no change in subsarcolemmal [cAMP], but a 2‐fold higher β‐AR stimulation of cytoplasmic [cAMP] in RVMs versus LVMs. Accordingly, β‐AR regulation of ICa,L and IKs were similar between LVMs and RVMs, whereas cytoplasmic PKA activity was increased in RVMs. Both PDE3 and PDE4 contributed to the β‐AR regulation of cytoplasmic [cAMP], and the difference between LVMs and RVMs was abolished by PDE3 inhibition and attenuated by PDE4 inhibition. Finally LV and RV intracavitary pressures were recorded in anesthetized beagle dogs. A bolus injection of isoproterenol increased RV dP/dtmax≈5‐fold versus 3‐fold in LV. Conclusion Canine RV and LV differ in their β‐AR response due to intrinsic differences in myocyte β‐AR downstream signaling. Enhanced β‐AR responsiveness of the RV results from higher cAMP elevation in the cytoplasm, due to a decreased degradation by PDE3 and PDE4 in the RV compared to the LV

    Discovery and characterization of ORM-11372, a novel inhibitor of the sodium-calcium exchanger with positive inotropic activity

    Get PDF
    BACKGROUND AND PURPOSE: The lack of selective sodium-calcium exchanger (NCX) inhibitors has hampered the exploration of physiological and pathophysiological roles of cardiac NCX 1.1. We aimed to discover more potent and selective drug like NCX 1.1 inhibitor. EXPERIMENTAL APPROACH: A flavan series-based pharmacophore model was constructed. Virtual screening helped us identify a novel scaffold for NCX inhibition. A distinctively different NCX 1.1 inhibitor, ORM-11372, was discovered after lead optimization. Its potency against human and rat NCX 1.1 and selectivity against other ion channels was assessed. The cardiovascular effects of ORM-11372 were studied in normal and infarcted rats and rabbits. Human cardiac safety was studied ex vivo using human ventricular trabeculae. KEY RESULTS: ORM-11372 inhibited human NCX 1.1 reverse and forward currents; IC(50) values were 5 and 6 nM respectively. ORM-11372 inhibited human cardiac sodium 1.5 (I(Na) ) and hERG K(V) 11.1 currents (I(hERG) ) in a concentration-dependent manner; IC(50) values were 23.2 and 10.0 μM. ORM-11372 caused no changes in action potential duration; short-term variability and triangulation were observed for concentrations of up to 10 μM. ORM-11372 induced positive inotropic effects of 18 ± 6% and 35 ± 8% in anaesthetized rats with myocardial infarctions and in healthy rabbits respectively; no other haemodynamic effects were observed, except improved relaxation at the lowest dose. CONCLUSION AND IMPLICATIONS: ORM-11372, a unique, novel, and potent inhibitor of human and rat NCX 1.1, is a positive inotropic compound. NCX inhibition can induce clinically relevant improvements in left ventricular contractions without affecting relaxation, heart rate, or BP, without pro-arrhythmic risk.Peer reviewe

    Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop.

    Get PDF
    Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting

    A comparative study of the effects of three guanylyl cyclase inhibitors on the L-type Ca 2+ and muscarinic K + currents in frog cardiac myocytes

    No full text
    International audienceTo investigate the participation of guanylyl cyclase in the muscarinic regulation of the cardiac L-type calcium current (I Ca), we examined the eects of three guanylyl cyclase inhibitors, 1H-[1,2,4]oxidiazolo[4,3-a]quinoxaline-1-one (ODQ), 6-anilino-5,8-quinolinedione (LY 83583), and methylene blue (MBlue), on the b-adrenoceptor; muscarinic receptor and nitric oxide (NO) regulation of I Ca and on the muscarinic activated potassium current I K,ACh , in frog atrial and ventricular myocytes. 2 ODQ (10 mM) and LY 83583 (30 mM) antagonized the inhibitory eect of an NO-donor (S-nitroso-Nacetylpenicillamine, SNAP, 1 mM) on the isoprenaline (Iso)-stimulated I Ca which was consistent with their inhibitory action on guanylyl cyclase. However, MBlue (30 mM) had no eect under similar conditions. 3 In the absence of SNAP, LY 83583 (30 mM) potentiated the stimulations of I Ca by either Iso (20 nM), forskolin (0.2 mM) or intracellular cyclic AMP (5 ± 10 mM). ODQ (10 mM) had no eect under these conditions, while MBlue (30 mM) inhibited the Iso-stimulated I Ca. 4 LY 83583 and MBlue, but not ODQ, reduced the inhibitory eect of up to 10 mM acetylcholine (ACh) on I Ca. 5 MBlue, but not LY 83583 and ODQ, antagonized the activation of I K,ACh by ACh in the presence of intracellular GTP, and this inhibition was weakened when I K,ACh was activated by intracellular GTPgS. 6 The potentiating eect of LY 83583 on Iso-stimulated I Ca was absent in the presence of either DLdithiothreitol (DTT, 100 mM) or a combination of superoxide dismutase (150 u ml 71) and catalase (100 u ml 71). 7 All together, our data demonstrate that, among the three compounds tested, only ODQ acts in a manner which is consistent with its inhibitory action on the NO-sensitive guanylyl cyclase. The two other compounds produced severe side eects which may involve superoxide anion generation in the case of LY 83583 and alteration of b-adrenoceptor and muscarinic receptor-coupling mechanisms in the case of MBlue

    Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes

    No full text
    Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems

    NO-donors potentiate the β-adrenergic stimulation of the L-type Ca 2+ current and the muscarinic activation of the inward rectifying K + current in rat cardiac myocytes

    No full text
    International audienceThe effects of nitric oxide (NO) donors on the L-type Ca(2+) current (I(Ca,L)) and the muscarinic activated K(+) current (I(K,ACh)) were studied in isolated rat cardiac myocytes. The nitrosothiol S-nitroso-N-acetyl-D,L-penicillamine (SNAP, 1 pM-1 microM) strongly potentiated the stimulation of the I(Ca,L) elicited by subthreshold concentrations of isoprenaline (Iso, 0.1-0.5 nM) in ventricular myocytes. The effect of SNAP was mimicked by 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO, 1 pM-1 nM), a NONOate that spontaneously releases NO in a pH-controlled manner, and was blunted by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (100 microM), a NO trap. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxaline-1-one (10 microM), a guanylyl cyclase inhibitor, did not alter the effect of SNAP. SNAP (1 pM-1 microM) did not modify the effect of L858051 (0.1-0.3 microM), a forskolin analogue that activates adenylyl cyclase, on I(Ca,L) and did not enhance the basal I(Ca,L) in the presence of rolipram (1 microM), a phosphodiesterase type 4 inhibitor. Superfusion with Rp-CPT-cAMPS (500 microM), or internal dialysis with cAMP-dependent protein kinase (cA-PK) inhibitory peptide (PKI; 20 microM), inhibitors of the cA-PK, blunted the effect of SNAP (1 nM and 1 microM) on the Iso-stimulated (1-100 pM) I(Ca,L). SNAP (1 nM and 1 microM) potentiated the threshold stimulation of I(Ca,L) elicited by internal GTP-gammaS (10 microM), a non-hydrolysable analogue of GTP. SNAP (1 pM-1 microM) and DEANO (1 microM) potentiated the stimulation of I(K,ACh) elicited by low concentrations of ACh (1-2 nM) in rat atrial myocytes. The threshold stimulation of I(K,ACh) elicited by internal 5'-guanylylimidodiphosphate (10 microM) was also potentiated by NO donors. SNAP (1 microM) did not modify I(K,ACh) reconstituted in human embryonic kidney 293 cells, in the absence or in the presence of ACh (1 or 10 nM). Taken together, these data suggest that NO is a cGMP-independent modulator of G-protein-coupled muscarinic and beta-adrenergic receptor actions on cardiac ion channels. Although this action of NO seemed to occur at the level of G proteins, it appeared to require a component distinct from receptors, G proteins or their effectors
    corecore