861 research outputs found

    A FUSE survey of high-latitude Galactic molecular hydrogen

    Full text link
    Measurements of molecular hydrogen (H_2) column densities are presented for the first six rotational levels (J=0 to 5) for 73 extragalactic targets observed with FUSE. All of these have a final signal-to-noise ratio larger than \snlimit, and are located at galactic latitude |b|>20 deg. The individual observations were calibrated with the FUSE calibration pipeline CalFUSE version 2.1 or higher, and then carefully aligned in velocity. The final velocity shifts for all the FUSE segments are listed. H_2 column densities or limits are determined for the 6 lowest rotational (J) levels for each HI component in the line of sight, using a curve-of-growth approach at low column densities ~16.5), and Voigt-profile fitting at higher column densities. Detections include 73 measurements of low-velocity H_2 in the Galactic Disk and lower Halo. Eight sightlines yield non-detections for Galactic H_2. The measured column densities range from log N(H_2)=14 to log N(H_2)=20. Strong correlations are found between log N(H_2) and T_01, the excitation temperature of the H_2, as well as between log N(H_2) and the level population ratios (log (N(J')/N(J))). The average fraction of nuclei in molecular hydrogen (f(H_2)) in each sightline is calculated; however, because there are many HI clouds in each sightline, the physics of the transition from HI to H_2 can not be studied. Detections also include H2 in 16 intermediate-velocity clouds in the Galactic Halo (out of 35 IVCs). Molecular hydrogen is seen in one high-velocity cloud (the Leading Arm of the Magellanic Stream), although 19 high-velocity clouds are intersected; this strongly suggests that dust is rare or absent in these objects. Finally, there are five detections of H_2 in external galaxies.Comment: Accepted for ApJ Supplement. Note: figs 7 and 8 not included because astro-ph rejects them as too bi

    Molecular Hydrogen Emission Lines in Far Ultraviolet Spectroscopic Explorer Observations of Mira B

    Full text link
    We present new Far Ultraviolet Spectroscopic Explorer (FUSE) observations of Mira A's wind-accreting companion star, Mira B. We find that the strongest lines in the FUSE spectrum are H2 lines fluoresced by H I Lyman-alpha. A previously analyzed Hubble Space Telescope (HST) spectrum also shows numerous Lyman-alpha fluoresced H2 lines. The HST lines are all Lyman band lines, while the FUSE H2 lines are mostly Werner band lines, many of them never before identified in an astrophysical spectrum. We combine the FUSE and HST data to refine estimates of the physical properties of the emitting H2 gas. We find that the emission can be reproduced by an H2 layer with a temperature and column density of T=3900 K and log N(H2)=17.1, respectively. Another similarity between the HST and FUSE data, besides the prevalence of H2 emission, is the surprising weakness of the continuum and high temperature emission lines, suggesting that accretion onto Mira B has weakened dramatically. The UV fluxes observed by HST on 1999 August 2 were previously reported to be over an order of magnitude lower than those observed by HST and the International Ultraviolet Explorer (IUE) from 1979--1995. Analysis of the FUSE data reveals that Mira B was still in a similarly low state on 2001 November 22.Comment: 23 pages, 6 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; accepted by Ap

    A class of residual distribution schemes and their relation to relaxation systems

    Full text link
    Residual distributions (RD) schemes are a class of of high-resolution finite volume methods for unstructured grids. A key feature of these schemes is that they make use of genuinely multidimensional (approximate) Riemann solvers as opposed to the piecemeal 1D Riemann solvers usually employed by finite volume methods. In 1D, LeVeque and Pelanti [J. Comp. Phys. 172, 572 (2001)] showed that many of the standard approximate Riemann solver methods (e.g., the Roe solver, HLL, Lax-Friedrichs) can be obtained from applying an exact Riemann solver to relaxation systems of the type introduced by Jin and Xin [Comm. Pure Appl. Math. 48, 235 (1995)]. In this work we extend LeVeque and Pelanti's results and obtain a multidimensional relaxation system from which multidimensional approximate Riemann solvers can be obtained. In particular, we show that with one choice of parameters the relaxation system yields the standard N-scheme. With another choice, the relaxation system yields a new Riemann solver, which can be viewed as a genuinely multidimensional extension of the local Lax-Friedrichs scheme. This new Riemann solver does not require the use Roe-Struijs-Deconinck averages, nor does it require the inversion of an m-by-m matrix in each computational grid cell, where mm is the number of conserved variables. Once this new scheme is established, we apply it on a few standard cases for the 2D compressible Euler equations of gas dynamics. We show that through the use of linear-preserving limiters, the new approach produces numerical solutions that are comparable in accuracy to the N-scheme, despite being computationally less expensive.Comment: 46 pages, 14 figure

    A new constraint on cosmological variability of the proton-to-electron mass ratio

    Get PDF
    Exotic cosmologies predict variability of the fundamental physical constants over the cosmic time. Using the VLT/UVES high resolution spectra of the quasar Q0347-3819 and unblended electronic - vibrational - rotational lines of the H2 molecule identified at z = 3.025 we test possible changes in the proton - to - electron mass ratio mu_0 = m_p/m_e over the period of 11 Gyr. We obtained a new constraint on the time - averaged variation rate of mu_0 of |d mu /d t /mu_0| < 5 10^{-15} yr^{-1} (1 sigma c.l.). The estimated 1 sigma uncertainty interval of the |Delta mu/mu_0| ratio of about 0.004% implies that since the time when the H2 spectrum was formed at z = 3.025, mu_0 has not changed by more than a few thousands of a percent.Comment: 5 pages, 3 figures, a revised version accepted by MNRA

    Inferring physical conditions in interstellar clouds of H_2

    Get PDF
    We have developed a code that models the formation, destruction, radiative transfer, and vibrational/rotational excitation of H_2 in a detailed fashion. We discuss how such codes, together with FUSE observations of H_2 in diffuse and translucent lines of sight, may be used to infer various physical parameters. We illustrate the effects of changes in the major physical parameters (UV radiation field, gas density, metallicity), and we point out the extent to which changes in one parameter may be mirrored by changes in another. We provide an analytic formula for the molecular fraction, f_H2, as a function of cloud column density, radiation field, and grain formation rate of H_2. Some diffuse and translucent lines of sight may be concatenations of multiple distinct clouds viewed together. Such situations can give rise to observables that agree with the data, complicating the problem of uniquely identifying one set of physical parameters with a line of sight. Finally, we illustrate the application of our code to an ensemble of data, such as the FUSE survey of H_2 in the Large and Small Magellanic Clouds (LMC/SMC), in order to constrain the elevated UV radiation field intensity and reduced grain formation rate of H_2 in those low- metallicity environments.Comment: 33 pages (aastex, manuscript), 9 figures (3 color). accepted to Ap

    Spatial Variability in the Ratio of Interstellar Atomic Deuterium to Hydrogen. I. Observations toward delta Orionis by the Interstellar Medium Absorption Profile Spectrograph

    Full text link
    Studies of the abundances of deuterium in different astrophysical sites are of fundamental importance to answering the question about how much deuterium was produced during big bang nucleosynthesis and what fraction of it was destroyed later. With this in mind, we used the Interstellar Medium Absorption Profile Spectrograph (IMAPS) on the ORFEUS-SPAS II mission to observe at a wavelength resolution of 4 km/s (FWHM) the L-delta and L-epsilon absorption features produced by interstellar atomic deuterium in the spectrum of delta Ori A. A chi-square analysis indicated that 0.96 < N(D I)< 1.45e15 cm^{-2} at a 90% level of confidence, and the gas is at a temperature of about 6000K. To obtain an accurate value of N(H I) needed for a determination of the atomic ratio of D to H, we measured the L-alpha absorption features in 57 spectra of delta Ori in the IUE archive. From our measurement of N(H I)= 1.56e20 cm^{-2}, we found that N(D I)/N(H I)= 7.4(+1.9,-1.3)e-6 (90% confidence). Our result for D/H contrasts with the more general finding along other lines of sight that D/H is approximately 1.5e-5. The underabundance of D toward delta Ori A is not accompanied by an overabundance of N or O relative to H, as one might expect if the gas were subjected to more stellar processing than usual.Comment: 37 pages, 6 figures. Submitted to the Astrophysical Journa

    Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation

    Full text link
    We analyze the dynamical expansion of the HII region, photodissociation region, and the swept-up shell, solving the UV- and FUV-radiative transfer, the thermal and chemical processes in the time-dependent hydrodynamics code. Following our previous paper, we investigate the time evolutions with various ambient number densities and central stars. Our calculations show that basic evolution is qualitatively similar among our models with different parameters. The molecular gas is finally accumulated in the shell, and the gravitational fragmentation of the shell is generally expected. The quantitative differences among models are well understood with analytic scaling relations. The detailed physical and chemical structure of the shell is mainly determined by the incident FUV flux and the column density of the shell, which also follow the scaling relations. The time of shell-fragmentation, and the mass of the gathered molecular gas are sensitive tothe ambient number density. In the case of the lower number density, the shell-fragmentation occurs over a longer timescale, and the accumulated molecular gas is more massive. The variations with different central stars are more moderate. The time of the shell-fragmentation differs by a factor of several with the various stars of M_* = 12-101 M_sun. According to our numerical results, we conclude that the expanding HII region should be an efficient trigger for star formation in molecular clouds if the mass of the ambient molecular material is large enough.Comment: 49 pages, including 17 figures ; Accepted for publication in Ap

    The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44

    Full text link
    We present measurements of the column densities of interstellar DI, OI, NI, and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a distance of 554+/-66 pc. This target is among the seven most distant Galactic sight lines for which these abundance ratios have been measured. The column densities were estimated by profile fitting and curve of growth analyses. We find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75 +1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant Galactic sight lines for which the deuterium abundance has been measured LSE 44 is one of the few with D/H higher than the Local Bubble value, but D/O toward all these targets is below the Local Bubble value and more uniform than the D/H distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap

    A New Probe of the Planet-Forming Region in T Tauri Disks

    Full text link
    We present new observations of the FUV (1100-2200 Angstrom) radiation field and the near- to mid-IR (3--13.5 micron) spectral energy distribution (SED) of a sample of T Tauri stars selected on the basis of bright molecular disks (GM Aur, DM Tau, LkCa15). In each source we find evidence for Ly alpha induced H2 fluorescence and an additional source of FUV continuum emission below 1700 Angstroms. Comparison of the FUV spectra to a model of H2 excitation suggests that the strong continuum emission is due to electron impact excitation of H2. The ultimate source of this excitation is likely X-ray irradiation which creates hot photo-electrons mixed in the molecular layer. Analysis of the SED of each object finds the presence of inner disk gaps with sizes of a few AU in each of these young (~1 Myr) stellar systems. We propose that the presence of strong H2 continuum emission and inner disk clearing are related by the increased penetration power of high energy photons in gas rich regions with low grain opacity.Comment: 5 pages, 3 figures, accepted by ApJ Letter
    • 

    corecore