1,899 research outputs found

    Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    Full text link
    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.Comment: version 2, minor text update

    Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs

    Full text link
    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT response in a Monte Carlo simulation.Comment: minor changes by referee reques

    Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs

    Full text link
    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT response in a Monte Carlo simulation.Comment: minor changes by referee reques

    Akustische Messungen zur Siededetektion in der KNK II

    Get PDF

    A Link Between Plant Stress and Hydrodynamics? Indications From a Freshwater Macrophyte

    Get PDF
    Live plants are increasingly used in hydraulic laboratories to investigate flow-vegetation interactions. In such experiments, they are often exposed to stressful handling and storage that can cause strong physiological responses and modifications in plant biomechanics. Little is known about the potential effect of these impacts on the performance of plants during hydraulic experiments. In this multidisciplinary study with a freshwater macrophyte (Potamogeton natans) we assess whether the duration and the conditions in which plants are stored in a laboratory prior to testing can impact plant stress, biomechanics and hydrodynamics, and quantify this impact. Plant stress was evaluated using chlorophyll fluorescence analysis (and the maximum quantum yield of photosystem II as specific indicator). Plant hydrodynamics were assessed using the drag coefficient calculated from drag force measurements at two flow scenarios. The results show that different plant handling/storage procedures can have a significant impact on plant hydrodynamics even within a short time frame, with a variation of the mean drag coefficient of approximately 30% across groups, which is comparable to the variation found across different species of freshwater macrophytes in previous studies. Plants with the highest level of stress were also characterized by the lowest drag coefficient across the groups considered, suggesting a potential link between plant stress and hydrodynamics

    Akustische Messungen im KNK I-Reaktor

    Get PDF

    Families at Five: Extending Land-Grant Research Findings to Families

    Get PDF
    Families at Five is a joint community outreach partnership between Colorado State University (CSU) Department of Human Development and Family Studies and CSU Cooperative Extension. The program provides research-based family life education and resources to families, Extension educators, and family life community professionals. Comprised of an adult program with accompanying programs for adolescents and children, Families at Five is designed to educate family members on ways to strengthen family relationships. Included in the article are suggestions for engaging Cooperative Extension agents and other community practitioners in the program planning and delivery of educational programs
    • …
    corecore