212 research outputs found

    Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment

    Get PDF
    The interaction between the human microbiome and immune system has an effect on several human metabolic functions and impacts our well-being. Additionally, the interaction between humans and microbes can also play a key role in determining the wellness or disease status of the human body. Dysbiosis is related to a plethora of diseases, including skin, inflammatory, metabolic, and neurological disorders. A better understanding of the host-microbe interaction is essential for determining the diagnosis and appropriate treatment of these ailments. The significance of the microbiome on host health has led to the emergence of new therapeutic approaches focused on the prescribed manipulation of the host microbiome, either by removing harmful taxa or reinstating missing beneficial taxa and the functional roles they perform. Culturing large numbers of microbial taxa in the laboratory is problematic at best, if not impossible. Consequently, this makes it very difficult to comprehensively catalog the individual members comprising a specific microbiome, as well as understanding how microbial communities function and influence host-pathogen interactions. Recent advances in sequencing technologies and computational tools have allowed an increasing number of metagenomic studies to be performed. These studies have provided key insights into the human microbiome and a host of other microbial communities in other environments. In the present review, the role of the microbiome as a therapeutic agent and its significance in human health and disease is discussed. Advances in high-throughput sequencing technologies for surveying host-microbe interactions are also discussed. Additionally, the correlation between the composition of the microbiome and infectious diseases as described in previously reported studies is covered as well. Lastly, recent advances in state-of-the-art bioinformatics software, workflows, and applications for analysing metagenomic data are summarized

    Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Get PDF
    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress

    Assessment of Pulpine Mineral effect on root maturation for immature dog teeth with infected pulp

    Get PDF
    The aim of the study was to assess the effect of pulpine mineral on root maturation for immature dog teeth with infected pulp and compare the results with Mineral Trioxide Aggregate (MTA). Materials and methods: Sixty (60) permanent dog teeth from six mongrel dogs were selected. Dogs were randomly divided into 2 equal study groups (3 dogs/ group), according to the post-treatment evaluation period. Group one (1 month, n= 30 teeth), Group two (3 months, n= 30 teeth). Each main group was then subdivided according to the materials used into 4 experimental subgroups: Pulpine mineral, n=9, MTA group, n=9, Positive control group, n=6 and negative control group, n=6. Radiographic evaluation was performed to assess the increase in the root length. Results: The results showed that after 1 month; the radiographic evaluation regarding root length revealed that the difference in root length between one month after treatment and the preoperative condition was recorded 9.94±5.19 mm in the pulpine mineral group while it was recorded 5.38±3.78 mm in the MTA group, the positive control group showed the least one in the change in the root length 1.00±1.87 mm, while the negative control group was 7.00±4.06 mm. After 3 months; results showed The difference in root length between three months after treatment and the preoperative condition was recorded 8.36±2.45 mm in the pulpine mineral group while it was recorded 8.63±5.83 mm in the MTA group, the least change in the root length was detected 1.60±3.13 mm, while the highest change was 12.00±4.90 mm which was the negative control group. Conclusion: PMIN is a promising alternative to MTA when used for pulpotomy. Clinical relevance: Vital pulp therapy in immature teeth can be done using PMIN as an alternative to MTA

    Tapping Into Actinobacterial Genomes for Natural Product Discovery

    Get PDF
    The presence of secondary metabolite biosynthetic gene clusters (BGCs) makes actinobacteria well-known producers of diverse metabolites. These ubiquitous microbes are extensively exploited for their ability to synthesize diverse secondary metabolites. The extent of their ability to synthesize various molecules is yet to be evaluated. Current advancements in genome sequencing, metabolomics, and bioinformatics have provided a plethora of information about the mechanism of synthesis of these bioactive molecules. Accessing the biosynthetic gene cluster responsible for the production of metabolites has always been a challenging assignment. The genomic approach developments have opened a new gateway for examining and manipulating novel antibiotic gene clusters. These advancements have now developed a better understanding of actinobacterial physiology and their genetic regulation for the prolific production of natural products. These new approaches provide a unique opportunity to discover novel bioactive compounds that might replenish antibiotics’ exhausted stock and counter the microbes’ resistance crisis

    Synergistic Interaction of Rhizobium tropici, Rhizophagus irregularis and Serendipita indica in Promoting Snap Bean Growth

    Get PDF
    The overuse of chemical pesticides and fertilizers in crop farming has led to a decrease in crop quality and negative impacts on soil and the environment. It is crucial to adopt alternative strategies to maintain soil and environmental quality while enhancing crop growth and yield. To explore this, a study was conducted under greenhouse conditions to investigate the effect of Rhizobium tropici CIAT 899 alone, as well as in association with mycorrhizae (Rhizophagus irregularis) and endophytic fungus (Serendipita indica), on the growth, yield, and nutrient status of snap bean plants. At harvest, the rhizobial strain CIAT 899 demonstrated the highest effectiveness. It significantly increased the number of nodules in both Contender and Garrafal Enana varieties by 6.97% and 14.81%, respectively, compared with the control without inoculation. Furthermore, the results indicated that co-inoculation of Rhizobium and symbiotic fungi had positive effects on nitrogen content, phosphorus availability, and overall plant growth. Regardless of the variety, plants inoculated with R. tropici CIAT 899 and Serendipita indica exhibited the highest values for plant growth parameters. This combination resulted in 168% and 135% increases in root dry biomass, as well as 140% and 225% increases in the number of pods for Contender and Garrafal Enana, respectively, compared with the control at harvest. Additionally, this study highlights the potential benefits of combining R. tropici with either Serendipita indica or Rhizophagus irregularis in terms of nitrogen and phosphorus uptake. These symbiotic microorganisms demonstrated synergistic interactions with snap bean plants, leading to improved mineral nutrition and enhanced growth. Overall, these findings suggest that utilizing these symbiotic microorganisms can effectively enhance the mineral nutrition and growth of snap bean plants.info:eu-repo/semantics/publishedVersio

    Ameliorations in dyslipidemia and atherosclerotic plaque by the inhibition of HMG-CoA reductase and antioxidant potential of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd in rabbits

    Get PDF
    The assigned work was aimed to examine the capability of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd to inhibit HMG-CoA reductase and regression of the atherosclerotic plaque. The chemical fingerprinting of the test extract was assessed by LC-MS/MS. Consequently, the analyses of in-vitro, in-vivo, and in-silico were executed by using the standard protocols. The in-vitro assessment of the test extract revealed 74.1% inhibition of HMG-CoA reductase. In-vivo assessments of the test extract indicated that treated hypercholesterolemic rabbits exhibited a significant (P≤0.001) amelioration in the biomarker indices of the dyslipidaemia i.e., atherogenic index, Castelli risk index(I&II), atherogenic coefficient along with lipid profile. Subsequently, significant reductions were observed in the atherosclerotic plaque and antioxidant levels. The in-silico study of molecular docking shown interactions capabilities of the leading phytoconstituents of the test extract i.e., eicosanoic acid, linoleic acid, and flavan-3-ol with target protein of HMG-CoA reductase. The values of RSMF and potential energy of top docked complexes were show significant interactions. Accordingly, the free energy of solvation, interaction angle, radius of gyration and SASA were shown significant stabilities of top docked complex. The cumulative data of results indicate phytoconstituents of an aqueous seed extract of Acacia senegal have capabilities to inhibit the HMG-CoA reductase and improve the levels of antioxidants

    Recent developments in ultrasound approach for preservation of animal origin foods

    Get PDF
    Ultrasound is a contemporary non-thermal technology that is currently being extensively evaluated for its potential to preserve highly perishable foods, while also contributing positively to the economy and environment. There has been a rise in the demand for food products that have undergone minimal processing or have been subjected to non-thermal techniques. Livestock-derived food products, such as meat, milk, eggs, and seafood, are widely recognized for their high nutritional value. These products are notably rich in proteins and quality fats, rendering them particularly vulnerable to oxidative and microbial spoilage. Ultrasound has exhibited significant antimicrobial properties, as well as the ability to deactivate enzymes and enhance mass transfer. The present review centers on the production and classification of ultrasound, as well as its recent implementation in the context of livestock-derived food products. The commercial applications, advantages, and limitations of the subject matter are also subject to scrutiny. The review indicated that ultrasound technology can be effectively utilized in food products derived from livestock, leading to favorable outcomes in terms of prolonging the shelf life of food while preserving its nutritional, functional, and sensory attributes. It is recommended that additional research be conducted to investigate the effects of ultrasound processing on nutrient bioavailability and extraction. The implementation of hurdle technology can effectively identify and mitigate the lower inactivation of certain microorganisms or vegetative cells.info:eu-repo/semantics/publishedVersio

    The Effectiveness of Protected Areas in Conserving Globally Threatened Western Tragopan Tragopan melanocephalus.

    Get PDF
    Protected areas are a critical tool to conserve biodiversity in the face of the global crisis of species extinction. Here, we present the first ever management effectiveness assessment of Pakistan's Protected Areas (PAs). We link these assessments to the delivery of conservation outcomes focusing on the threatened Western Tragopan (Tragopan melanocephalus) endemic to Pakistan and India. We used two approaches, first mapping the spatial distribution of potential habitat coverage using machine learning ensemble models and second, an assessment of the management effectiveness of protected areas. Our results show that only Machiara National Park scored just above 40% (indicating relatively weak management), 22 of the PAs fell within the 25-50% quantile (indicating weak management), and 3 scored below 25% (indicating poor management). PAs within the species distributional range covered 92,387 ha which is only 2% of the total potential habitat of the Tragopan. Scoring of Planning element was insufficient both in term of the site and species. Likewise, inputs (e.g., research and monitoring program, staff numbers, staff training, current budget, security of budget, and management after process) were also inadequate. Finally, we recommend the establishment of more protected areas within the species potential habitat and inclusion of species-specific plans in Pakistan's PAs management

    Structural and functional characteristics and expression profile of the 20S proteasome gene family in Sorghum under abiotic stress

    Get PDF
    The 26S proteasome is a molecular machine that catalyzes and degrades protein intracellularly with the help of its core complex called 20S proteasome. The 20S proteasomes degrade and cleave denatured, cytotoxic, damaged, and unwanted proteins via proteolysis and impart biotic and abiotic stress tolerance in model plants. This study identified 20 genes, namely, 10 SbPA and 10 SbPB that encode for α- and β-subunits of the 20S proteasome in Sorghum bicolor (L.) Moench (2n= 20). These genes have been found distributed on the 1st, 2nd, 3rd, 4th, 5th, 7th, and 10th chromosomes. These sorghum genes were orthologous to corresponding rice. Phylogenetic analysis clustered these genes into seven clades, each with one of the seven α-subunits (1 to 7) and one of the seven β-subunits (1 to 7). In silico gene expression analysis suggested that nine genes were involved in abiotic stress response (cold, drought, and abscisic acid hormone). The expression of these proteasomal genes was studied in shoots and roots exposed to different abiotic stresses (cold, drought, and abscisic acid) by quantitative real-time polymerase chain reaction. A significant increase in the relative fold expression of SbPBA1, SbPAA1, SbPBG1, SbPBE1, and SbPAG1 genes under ABA and drought stress provides an insight into its involvement in abiotic stress. No expression was observed for cold stress of these genes indicating their non-involvement. It is believed that additional investigation into the SbPA/SbPB genes would aid in the creation of S. bicolor cultivars that are resistant to climate change

    Seroprevalence of SARS-CoV-2 (COVID-19) among Healthcare Workers in Saudi Arabia: Comparing Case and Control Hospitals

    Get PDF
    Healthcare workers (HCWs) stand at the frontline for fighting coronavirus disease 2019 (COVID-19) pandemic. This puts them at higher risk of acquiring the infection than other individuals in the community. Defining immunity status among health care workers is therefore of interest since it helps to mitigate the exposure risk. This study was conducted between May 20th and 30th, 2020. Eighty-five hospitals across Kingdom of Saudi Arabia were divided into 2 groups: COVID-19 referral hospitals are those to which RT-PCR-confirmed COVID-19 patients were admitted or referred for management (Case-hospitals). COVID-19 nonaffected hospitals where no COVID-19 patients had been admitted or managed and no HCW outbreak (Control hospitals). Next, seroprevalence of severe acute respiratory syndrome coronavirus 2 among HCWs was evaluated; there were 12,621 HCWs from the 85 hospitals. There were 61 case-hospitals with 9379 (74.3%) observations, and 24 control-hospitals with 3242 (25.7%) observations. The overall positivity rate by the immunoassay was 299 (2.36%) with a significant difference between the case-hospital (2.9%) and the control-group (0.8%) (P value <0.001). There was a wide variation in the positivity rate between regions and/or cities in Saudi Arabia, ranging from 0% to 6.31%. Of the serology positive samples, 100 samples were further tested using the SAS2pp neutralization assay; 92 (92%) samples showed neutralization activity. The seropositivity rate in Kingdom of Saudi Arabia is low and varies across different regions with higher positivity in case-hospitals than control-hospitals. The lack of neutralizing antibodies (NAb) in 8% of the tested samples could mean that assay is a more sensitive assay or that neutralization assay has a lower detection limits; or possibly that some samples had cross-reaction to spike protein of other coronaviruses in the assay, but these were not specific to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
    • …
    corecore