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The interaction between the human microbiome and immune system has an effect

on several human metabolic functions and impacts our well-being. Additionally, the

interaction between humans and microbes can also play a key role in determining the

wellness or disease status of the human body. Dysbiosis is related to a plethora of

diseases, including skin, inflammatory, metabolic, and neurological disorders. A better

understanding of the host-microbe interaction is essential for determining the diagnosis

and appropriate treatment of these ailments. The significance of the microbiome on

host health has led to the emergence of new therapeutic approaches focused on the

prescribed manipulation of the host microbiome, either by removing harmful taxa or

reinstating missing beneficial taxa and the functional roles they perform. Culturing large

numbers of microbial taxa in the laboratory is problematic at best, if not impossible.

Consequently, this makes it very difficult to comprehensively catalog the individual

members comprising a specific microbiome, as well as understanding how microbial

communities function and influence host-pathogen interactions. Recent advances in

sequencing technologies and computational tools have allowed an increasing number of

metagenomic studies to be performed. These studies have provided key insights into the

human microbiome and a host of other microbial communities in other environments. In

the present review, the role of the microbiome as a therapeutic agent and its significance

in human health and disease is discussed. Advances in high-throughput sequencing

technologies for surveying host-microbe interactions are also discussed. Additionally,

the correlation between the composition of the microbiome and infectious diseases as

described in previously reported studies is covered as well. Lastly, recent advances

in state-of-the-art bioinformatics software, workflows, and applications for analysing

metagenomic data are summarized.
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INTRODUCTION

Microbes are ubiquitous in nature, inhabiting almost every
conceivable environment, and play an important role in human
life. Microbes, though generally invisible, play an essential role
in ecosystem functioning (1, 2), modulating key ecosystem
processes such as plant growth, soil nutrient cycling, and
marine biogeochemical cycling (3–6). An innumerable number
of symbiotic, pathogenic, and commensal microbes colonized
the human body; collectively constituting the human microbiota.
Interactions between the human body and gut-microbiota are
widely recognized as influencing several aspects of human health
(7). A functioning microbiome is obligatory for host organisms,
as it contributes to the smooth functioning of important
physiological processes. In fact, host organisms have co-evolved
with their microbiota; with some commensals having evolved
as pathobionts while others as symbionts (8, 9). The presence
of certain commensals in the human gut induces signals that
drive proper functioning and maturation of the immune system.
Microbial communities take on a specific structure within
different hosts and physical environments (10). Consequently,
identification and characterization of the microbes inhabiting
a host, their distinct host phenotypes, and the biochemical
pathways by which microbes impact their hosts are the major
focus of host-microbiome research.

Analyses of host-microbe interactions can reveal the
core characteristics of the interaction, including their
identification, classification, profile prediction, and mechanisms
of interaction. Although the structure, function, dynamics,
and interactions of these microorganisms play an essential
role in human metabolism; their identification, quantification
and characterization can be problematic. The majority of
microbial communities are extremely diverse and most of
the individual organisms have not yet been cultured (11).
Secondly, their interaction with each other and tendency to
form intricate networks makes it difficult to predict their
behavior (3). Establishing mechanistic connections between gut-
microbiota and its functioning adds an extra challenge especially
in understanding the biology of intricate microbial consortia
(12). Classic approaches to microbial ecology have relied
on cultivation-dependent techniques to study host-microbe
interactions. Although these culture-dependent techniques have
generated interesting data sets, they have also resulted in a
spurious view of microbiota. Recently, however, a number of
culture-independent techniques, mainly PCR-based methods,
have evolved for the qualitative and quantitative identification
of microbes. These techniques have entirely changed the

Abbreviations: PCR, Polymerase chain reaction; NGS, Next generation
sequencing; GIT, Gastrointestinal tract; IBD, Inflammatory bowel disease;
IBS, Irritable bowel syndrome; SCFA, Short-chain fatty acids; PYY, Peptide YY;
HIV, Human immunodeficiency virus; KEGG, Kyoto Encyclopaedia of genes and
genomes; GOLD, Genomes Online Database; SBS, Sequencing by synthesis; dNTP,
Deoxyribonucleotide triphosphate; PGM, Personal genome machine; ISFET,
Ion-sensitive, field-effect transistor; SMRT, Single-molecule, real-time sequencing;
ZMW, Zero mode wave; ONT, Oxford Nanopore Technologies; MG-RAST,
Metagenomics Rapid Annotation using Subsystem Technology; EBI, European
Bioinformatics Institute; QIIME, Quantitative Insights Into Microbial Ecology.

perception of the human microbiome and have paved the way
for the establishment of metagenomics. Metagenomic studies
are increasing our knowledge of host-pathogenic interactions
by revealing the genes that potentially allow microbes to
influence their hosts in unexpected ways. Metagenomic
studies of host-microbe interactions can provide useful
information applicable to a wide array of disciplines; including
pathogen surveillance, biotechnology, host-microbe interactions,
functional dysbiosis, and evolutionary biology (13). Recent
studies of host microbiomes using metagenomic approaches
have offered key insights into host-microbe interactions.

In addition to allowing researchers to characterize the
composition of microbial communities, metagenomic studies
have also provided novel information on other aspects of the
biological sciences. For example, metagenomic studies on the
human microbiome have revealed possible links between the
gut microbiome and human diseases such as depression (14),
rheumatoid arthritis (15) and diabetes (16). Several studies have
utilized materials from ancient communities to trace changes
in the microbiome. These studies have conducted metagenomic
studies of coprolites (17), teeth (18), and other tissues (19).
Provided that nucleic acids can be extracted from the sample,
almost any material from an environment can be used in
metagenomic analyses. One of the largest metagenomic studies
to date is the Global Ocean Sampling. Metagenomics is also
being applied to the field of medicine. Figure 1 illustrates the
timeline of sequence-based metagenomic studies and shows the
range of environments that have been sampled and analyzed
between 2003 and 2017. Several articles have been published
that have focused on metagenomic methodology and analysis
software (20–27). The present review attempts to provide
an overview of the high-throughput sequencing technologies
and analytical software currently available for studying host-
microbe interactions. Moreover, there is an attempt to also
highlight the advancement of sequencing techniques over time
and provide information regarding the appropriateness for
applications in exploring the human microbiome and the
metagenomes of other diverse environments. Lastly, a discussion
is provided of the various bioinformatic options that are available
to successfully meet both de novo sequencing and sequence
alignment challenges.

UNSEEN MICROBIAL DIVERSITY AND ITS
GLOBAL IMPLICATIONS

Microbes conduct significant functions that greatly benefit
the health of planet, as well as its inhabitants. Microbes help
to regulate, modulate, and maintain earth’s atmosphere (28),
support the growth of plants and help to suppress plant diseases
(29), contribute to human health (30), breakdown harmful
chemicals present in contaminated environments (31, 32),
support sustainable farming (33), modulate greenhouse gases
(34), are primary components of various biogeochemical cycles
(35) and greatly contribute to ecological processes, including
climate change (36). In addition to remediating contaminated
environments and modulating the atmosphere, the combined
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FIGURE 1 | Timeline of the sequence-based metagenomic projects showing the variety of the environmental samples.

activity of these invisible microbial communities shape the face
of the biosphere and represent untapped reservoirs of novel
biomolecules; including pharmacological drugs and industrial
enzymes (37). Microbes coexisting in the human body offer
a variety of benefits by modulating fundamental metabolic
processes, immunity, and signal transduction. Increasing
evidence suggests that there is a significant association between
the human gut microbiome and the development of human
diseases (38).

Previously, it was difficult to study microbes in their natural
environment and thus microbiologists were limited to studying
individual species in the laboratory. This approach, however,
has limited the data that can be obtained on microbial
communities inhabiting diverse ecosystems. Metagenomics has
helped to resolve this limitation and has greatly increased
our understanding of entire microbial communities, thus
significantly advancing our knowledge of microbial ecology
and microbiology in general. Metagenomics, supported by
next-generation-sequencing (NGS) has literally removed the
limitations and boundaries associated with classic culture-
based approaches (39–41). NGS technology has enabled the
comprehensive study of diverse microbiomes in their native
environments, including the oceanmicrobiome (42), human skin
microbiome (43), human microbiome (44) and the Saragossa
Sea microbiome (45). Some of the novel findings enabled
by metagenomics involve the identification of endosymbiotic
bacterial phyla (46), nitrification processes (47, 48), human
disease pathogens associated with epidemics (49), bacteria (50),
and viruses (51) associated with inflammatory bowel diseases,
and the identification of commensal gut bacteria (52).

MICROBIOME IN HUMAN HEALTH AND
DISEASE: A MECHANISTIC LINK

The human body serves as a host to a networked community of
microorganisms (microbiome) that outnumber the body’s own
cells. Research on the human microbiome has been the area

of immense interest over the past few years due to intimate
linkage of the microbiome with human health. The human
microbiome “our second genome” has intimately co-evolved with
humans for millions of years and plays a critical role in human
health. Deciphering the composition and function of the human
microbiome can provide a deeper understanding of its’ structural
and functional properties. In the future, our understanding of
the human microbiome and the application of metagenomic
analyses will greatly enhance our understanding of human
health and disease in specific individuals. The exploration of
human microbiome and metagenome is considered to represent
a frontier in human genetics.

The majority of research on the human microbiome has
focused on the microbes colonizing the human digestive system,
as these microorganisms are believed to influence human health
in a number of ways. The digestive system microbiome is
extremely diverse, with significant variations in its constituents
across individuals (44). Modulation of the microbiome by
extraneous factors, such as fecal transplantation and dietary
intervention, has been shown to be a potential therapeutic
approach to addressing a number of health-related problems
(53). The gastrointestinal tract (GIT) harbors a vast diversity of
microbes, comprising the intrinsic networks of both microbe-
microbe and host-microbe interactions (54). Microbial guilds
(species that exploit the same resources) have been found to
provide an interesting feature that can be used to help understand
processes taking place at both a single cell and community
level. Microbes under normal physiological conditions are
commensal and mediate digestion, strengthen the immune
system and inhibit or prevent pathogens from invading the
body. The linkage between the human microbiome and human
health remains largely unknown and unexplored, however, a
number of epidemiological studies have found that the overall
reduction in the diversity of digestive system microbiota is
linked to diseases such as eczema (55), asthma and inflammatory
diseases (56), diabetes and obesity (57), allergies (58), digestive
tract disorders such as IBD (inflammatory bowel disease) (59)
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and IBS (irritable bowel syndrome) (60). Dysbiosis (microbial
imbalance) has also been linked with the genesis and evolution
of a plethora of other diseases, including chronic fatigue
syndrome (61), cancer (62), colitis (63) bacterial vaginosis (64),
and anxiety and depression (65). Several recent studies have
highlighted the critical role that the gut microbiome plays
in modulating different immune responses, including immune
tolerance, via Treg (T regulatory) cell modulation. Studies
carried out by Geuking et al. (66), indicated that short-chain
fatty acids (SCFA) can promote the development of Treg cells
in the gut. Gut-inhabiting microbes facilitate the breakdown
of complex carbohydrate (67) and help in the utilization of
polysaccharides (68). Other examples of the health-supporting
functions of the gut-microbiome are protection against diseases
via immune modulation (69), fecal microbiome transplantation
(70), metabolism, xenobiotic toxicity and pharmacokinetics
(71).

THE MICROBIOME AS A THERAPEUTIC
AGENT

As mentioned, the human body is teeming with trillions
of microbes, collectively called the “human microbiome.”
Microbiome studies have now become a prominent field of
research by offering potential and novel methods of disease
diagnosis, prognosis, and treatment. Microbial ecology within
an ecosystem involves a cross-talk among its inhabitants. The
growth and survival of microbes in any ecosystem are largely
governed by their chemical environments, and microbes have
evolved the ability to adapt and utilize different chemicals
through specific genes (72, 73). Alterations (good and bad) in the
microbial equilibrium of the gut microbiome do occur. Science
has developed medications that have a significant impact on the
microbial equilibrium. Beneficial microbes colonizing the gut
produce a variety of chemicals, including analgesics, vitamins,
antioxidants and anti-inflammatory factors that protect and
support the normal functioning of the human body. Dysbiosis
(disruptions in microbiota) has been associated with different
diseases. Therefore, maintaining a beneficial gut microbiome, in
terms of both composition and function, is important for human
health (74, 75). The gut microbiome has an active relationship
with its human host and exhibits a regulatory role in cognition,
mood, pain, and anxiety, exerted through a gut-brain axis.
Drastic changes in the maternal microbiome that occur during
pregnancy influence the maturation and immunity of neonates.
Studies carried out by Ng et al. (76) indicated that increased levels
of salicylic acid in the intestines contribute to the proliferation
of pathogenic bacteria in the GIT when patients are treated with
antibiotics. Roberfroid et al. (77) reported that the consumption
of prebiotics (indigestible plant fiber) induces specific changes in
the gut microbiome, elevating levels of SCFA (short chain fatty
acid). Studies reported by Cani et al. (78) stated that fermentation
activity carried out by the gut microbiome results in reduced
hunger and increased satiety levels, which as a result, decreases
total energy inputs. Similarly, studies carried out by Archer et al.

(79) and Whelan et al. (80) confirmed that fermentation of non-
digestible carbohydrates by the gut microbiome controls food
intake activity and reduces energy intake. According to Parnell
et al. (81), prebiotic-induced changes in the gut microbiome
of obese patients decreases the circulation of lenomorelin or
ghrelin (a hunger hormone) and increases the peptide, tyrosine
or PYY. In contrast, however, studies carried out by Peters et al.
(82) and Hess et al. (83) indicated that prebiotic treatments
do not influence the appetite. A recent study by Tarini et al.
(84) demonstrated that a single dose of insulin significantly
decreases levels of lenomorelin blood plasma and augments
post-prandial plasma levels of Glucagon-like peptide-1. In short,
there is a growing body of evidence on the contribution of the
microbiome on human health and increased understanding that
the microbiome can serve as a potential therapeutic agent.

DISSECTING THE HOST-PATHOGEN
MICROBIOME

Host-pathogen interactions have profound consequences in
human biology and can be viewed as a battle between two
systems. Pathogens, which are the invaders, can seize host cells
and use them for their own advantage (8), and they can evolve so
quickly that they overpower the human immune system, as with
HIV infection (85). The conflict between the interacting partners
results in phenotypic changes and is believed to be the main
driving force for a number of phenomena, such as speciation
and the evolution of sex (86). Detailed mechanistic analyses of
host-pathogen interactions are varied with most still in need
of further study. Notably, little is known about the molecular
level dynamics of host-pathogen interactions and the need for
more studies on this topic are critical, especially those dealing
with the molecular events that regulate phenotypic changes
in the host. Advancements in Next Generation Sequencing
(NGS) technologies and bioinformatic tools have offered new
approaches for studying host-pathogen systems. Researchers are
now able to construct the genomes of both model and non-
model organisms. The use of these newly-developed tools allows
researchers to not only study the behavior of a single gene under
different conditions but also study the extensive impact of these
host-pathogen interactions on molecular environments (global
gene expression). Several open-source, standalone R packages
and web-based software programs have been developed to help
and acquire key insights in understanding the host-pathogen
microbiome (Figure 2). Amore detailed account ofmetagenomic
software and resources are given in a separate section of this
review wherein we mentioned some of the standard software
used for quality control, taxonomic classification, diversity
metrics, annotation and functional information, sequence
classification, metabolic pathway reconstruction, and statistical
analyses.

MICROBIAL CENSUS

Culture-independent methods are the most appropriate for
ascertaining the abundance of microbes that are present within
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FIGURE 2 | Tools and web servers related to gut microbiome studies.

a community. DNA re-association kinetics provide information
on both community structure and diversity (87). 16S rRNA gene
sequencing is one of the main methods used for identifying
the microbial taxa present in a community (88). The utility
of this approach is based on the fact that the DNA sequence
of regions between conserved areas of 16S rRNA vary among
different bacterial species and can be species specific. Two
different sequencing approaches used for studying microbial
communities are (i) the targeted sequencing (16Sr RNA)
and (ii) shotgun sequencing of the metagenome. Each of
these methods can provide strikingly different results when
used in metagenomic analyses. Shotgun sequencing methods
are generally considered superior for the identification and
characterization of microbial communities, as they typically
provide a greater level of diversity compared to amplicon
sequencing (89). Amplicon-based sequencing matches the DNA
sequence amplified using a set of universal primers based on
the highly-conserved 16S rRNA to sequences of known bacterial
taxa. In contrast to amplicon sequencing, shotgun sequencing
engages a genome-wide approach, utilizing random strings of
genomic DNA sequences obtained by breaking total genomic
DNA and matching the obtained sequences to an annotated
database of known DNA sequences using clade-specific marker

genes or common sequences. Shotgun metagenomics is often
used for gene cataloging and functional inference (10). Deep
sequencing of metagenomic samples, as was used in the Human
Microbiome Project and Metagenomics of the Human Intestinal
Tract, provides extensive sequence information even of minor
components (taxa) present in the metagenome. This allows for
the identification and characterization of the genes present within
a given microbial community. The obtained sequences reads can
either be used directly or first assembled into contigs, which are
then compared to an available database for the identification
of specific genes. De novo gene prediction is also possible
(90), which may identify motifs with functional inference. Gene
catalogs can also be compared with databases such as KEGG (the
Kyoto Encyclopedia of Genes andGenomes) (91), which arranges
the gene products into biological processes and pathways
(Figure 3).

METAGENOMICS AND MICROBIAL
STUDIES

Metagenomics is expected to play a major role in advancing
our understanding of microbes and microbial communities.
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FIGURE 3 | Microbiome analysis workflow.

It is tempting to suggest that metagenomics can serve as a
“universal test” for pathogens, eliminating the need to perform
lengthy serial testing involving specific assays. Recent advances
in sequencing techniques allow almost the entire genome
of individual microorganisms to be assembled directly from
environmental samples. Metagenomic analyses are playing
a decisive role in the characterization of human microbial
communities, as well as in determining the relationship
between the resident microbiome and invasive pathogens.
The accumulation of sequencing data has enhanced our
recognition and understanding of the changing nature of
microbial populations and their impact on the environment
(92) and on human health (93). Metagenomics is not only
helping to identify and characterize the human gut microbiome
but is also identifying novel genes and microbial pathways,
as well as functional dysbiosis. Clearly, metagenomics has
become an indispensable and fast-growing discipline in modern
science. Advances in NGS has led to a substantial increase in
the number of metagenomic studies listed in the Genomes
Online Database (GOLD) (https://gold.jgi.doe.gov). These
studies span a broad environmental spectrum, including natural

communities; as well as engineered and clinical environments
(94, 95).

STUDY OF MICROBIOME PRIOR TO NGS

Prior to the advent of NGS technologies, the accurate profiling
of microbial communities was challenging. The same was true
for characterizing the human gut microbiome, a highly dense
and diverse community containing only a small proportion
of microbes that could be cultured (96). Early studies of the
human gut microbiome involved the culturing of the microbes
present in samples (97) and studying the interactions between
co-cultured microbial taxa (98). These techniques, however,
provided information on only a limited set of microbial taxa
and microbial interactions. They failed to provide information
about the composition of the entire community and the
dynamics occurring between the taxa comprising the total
community. The emergence of NGS technologies has overcome
the limitations characteristic of studies based on culturing
techniques.
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DECIPHERING HOST-PATHOGEN
INTERACTIONS IN THE ERA OF NGS
TECHNOLOGIES

The advent of NGS technologies have greatly enhanced the
ability to identify and characterize metabolic and regulatory
mechanisms through which hosts and microbes interact with
each other to define a healthy or diseased state in the host
organism. NGS technologies are invaluable for the exploration
of the composition of the microbiome and exploring the
genetic, functional, and metabolic properties of the microbial
community. Sanger sequencing (99), the first generation of
DNA sequencing technology, was one of the widely used
sequencing method for more than three decades and is still
used today for low-throughput DNA sequencing or sequencing
of single DNA entities. Sanger DNA sequencing is based on
the principle of the selective incorporation of chain-terminating
dideoxynucleotides by DNA polymerase. This technique was the
major approach used in the Human Genome Project in 2001.
The high cost of Sanger sequencing and volume (number of
sequences) limitations reduced its potential for high-throughput
sequencing.

Exploring Host-Pathogen Interactions
Advances in NGS technologies now provide a fast, cost-effective
approach to delivering large volumes of highly-accurate data that
has resulted in a major paradigm shift over the past few decades
(100, 101). Time and cost were originally the main stumbling
blocks associated with sequencing technology. The advantages of
NGS over classic Sanger sequencing are that it is cost-effective,
devoid of a cloning step, offers highthroughput, and requires
minimal technical expertise. A major challenge with NGS data,
however, is the analysis of millions of sequences that allows one
to achieve statistically and scientifically meaningful conclusions
(Table 1).

Several different NGS platforms have been developed
(Figure 4) and are commonly used. These include the
Roche 454 GS FLX, Illumina (MiSeq and HiSeq), Ion
Torrent/IonProton/Ion Proton, SOLiD 5500 series, and Oxford
Nanopore. At present, the majority of microbial studies using
high-throughput sequencing have focused on either functional
metagenomics (103) or amplicon sequencing (104).

Roche 454 Genome Sequencer
This sequencing platform is based on the principle of
pyrophosphate release, which was originally described by Nyrén
et al. (105) in 1985 and reported by Hyman (106) in 1988. Roche
454 was produced and made commercially available in 2005,
and advertised as the first available high-throughput sequencing
system. The system utilizes sequencing by synthesis (SBS), in
which adapters are ligated to DNA fragments that cause the
binding of the fragments to microbeads in a Pico Titer Plate
(https://www.roche.com/). Amplification of the DNA fragments
is carried out by Emulsion PCR, in which water droplets
containing a single bead and PCR reagents are immersed in oil.
The long read length (400–500 bases with paired-ends), along
with its high efficiency, were more advantageous than what other

NGS platforms could provide at that time; and thus was used for
genome sequencing. The system generates 20Mb of sequences
per run with an average read length of approximately 100 bp
(107). One of the notable applications of the Roche 454 system
was the identification of the agents responsible for the epidemic
disease of honeybees (108). Additional information about Roche
454 Genome Sequencer can be obtained at http://www.roche.
com.

Illumina Genome Sequencer
The Illumina sequencing platform first emerged in 2006, and
was followed by the acquisition of Solexa by Illumina in 2007.
Illumina possesses an array of the most commonly sequencing
systems and has rapidly been adopted by many researchers
throughout the world. This is due to its’ cost-effectiveness, and
longer read length (although a limitation in the earlier version
of the Illumina, which was subsequently improved in the newer
version, MiSeq 2 × 300 bp). This led to a major shift by
the scientific community from using the Roche 454 platform
to Illumina technology (109). Illumina follows the principle
of SBS chemistry, by incorporating reversible chain terminator
nucleotides for all four bases, the labeling of each base with
a different fluorescent dye, and the use of a DNA polymerase
(110). Sequencing involves the ligation of specific adapters to
both ends of short DNA fragments, and the immobilization of
one of the adapters by binding to a solid support. The adapters
hybridize with specific oligonucleotides bound to a proprietary
substrate within a micro fluid flow cell. Fluorophore-bearing
nucleotides are then introduced one by one and incorporated
into the growing complementary strand by a DNA polymerase.
Sequential images are captured and analyzed to identify the
nucleotide that is incorporated in the growing strand and the
cycle is repeated with different nucleotide species. The resulting
reads have a final length of 35 nucleotides (111).

Illumina, however, introduced an upgraded version of their
technology, the Genome Analyser II, which tripled the output
relative to earlier versions of the Genome Analyser. Presently, the
IlluminaMiSeq offers one of the longest (300 bp) read lengths of
all of the Illumina products; facilitating the sequencing of paired-
end reads (104). Another Illumina platform, the Illumina HiSeq,
however, is able to generate approximately 200 Gbp of sequences
with a single read of 2 × 100 bp (paired-end) per run (112).
Additional information about the various Illumina sequencers
can be obtained at http://solexaqa.sourceforge.net/ (113).

Qiagen Gene Reader
In 2012, Qiagen introduced the Intelligent BioSystems cyclic
reversible termination platform, which was commercialized in
2015 under the name Gene Reader (114). In contrast to other
next-generation platforms, the Qiagen Gene Reader is the first
all-in-one platform that can execute all of the steps required
for sequencing DNA, from sample preparation to analysis. To
achieve this goal, the Gene Reader sequencer was combined with
the QIA cube sample preparation system and the Qiagen Clinical
Insight platform for variant analysis. Gene Reader virtually
utilizes the same approach as Illumina, apart from the fact
that only a small fraction of the added nucleotides incorporate
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TABLE 1 | Advantages and limitations of available Next generation sequencing (NGS) platforms.

Sequencing reaction Limitation Advantages Instruments Read length in

base pairs (bp)

Throughput Total number

of reads

Runtime

Sequencing by ligation or SOLiD

sequencing

This sequencing method

has been reported to

have problems in

sequencing particularly

palindromic sequences

and relatively slower than

other methods.

Relatively cheap SOLiD 5500

Wildfire

50 (SES) 80 Gb ∼700 M+ 6 days

75 (SES) 120 Gb

50 (SES)+ 160 Gb

SOLiD 5500xl 50 (SES) 160 Gb ∼1.4 bn+ 10 days+

75 (SES) 240 Gb

50 (SES)+ 320 Gb

BGISEQ-500

FCS155*

50–100

(SES/PES)+
8–40 Gb+ NA† 24 h

BGISEQ-500

FCL155

50–100

(SES/PES)+
40–200 Gb* NA† 24 h+

Sequencing by synthesis:

CRT

Equipment are very

expensive. Requires high

concentration of DNA.

Potential for high

sequencing yield,

depending upon

sequencer model

and desired

application

Illumina

MiniSeq Mid

Output

150 (SES)+ 2.1–2.4 Gb+ 14–16 M+ 17 h+

Illumina

MiniSeq

High output

75 (SES) 1.6–1.8 Gb 22–25 M(SES)+ 7 h

75 (PES) 3.3–3.7 Gb 44– 50 M(PES)+ 13 h

150 (PES)+ 6.6–7.5 Gb+ 24 h+

Illumina

MiSeq v2

36 (SES) 540–610Mb 12–15M (SES) 4 h

25 (PES) 750–850Mb 24–30M (PES)+ 5.5 h

150 (PES) 4.5–5.1 Gb 24 h

250 (PES)* 7.5–8.5 Gb+ 39 h

Illumina

MiSeq v3

75 (PES) 3.3–3.8 Gb 44–50M (PES)+ 21–56 h+

300 (PES)+ 13.2–15 Gb+

Illumina

NextSeq

500/550 Mid

output

75 (PES) 16–20 Gb Up to 260M

(PES)+
15 h

150 (PES)+ 32–40 Gb+ 26 h+

Illumina

NextSeq

500/550 High

output

75 (SES) 25–30 Gb 400 M(SES)+ 11 h

75 (PES) 50–60 Gb 800 M(PES)+ 18 h

150 (PES)+ 100–120 Gb+ 29 h+

Illumina

HiSeq2500v2

Rapid run

36 (SES) 9–11 Gb 300 M(SES)+ 7 h

50 (PES) 25–30 Gb 600 M(PES)+ 16 h

100 (PES) 50–60 Gb 27 h

150 (PES) 75–90 Gb 40 h

250 (PES)+ 125–150 Gb+ 60 h+

Illumina

HiSeq2500 v3

36 (SES) 47–52 Gb 1.5 bn (SE) 2 days

50 (PES) 135–150 Gb 3 bn(PES)+ 5.5 days

100 (PES)+ 270–300 Gb 11 days+

(Continued)
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TABLE 1 | Continued

Sequencing reaction Limitation Advantages Instruments Read length in

base pairs (bp)

Throughput Total number

of reads

Runtime

Illumina

HiSeq2500 v4

36 (SES) 64–72 Gb 2 bbn(SES) 29 h

50 (PES) 180–200 Gb 4 B (PES)+ 2.5 days

100 (PES) 360–400 Gb 5 days

125 (PES)+ 450–500 Gb+ 6 days

Illumina

HiSeq 3000/4000

50 (SES) 105–125 Gb 2.5 bn (SES)+ 1–3.5 days+

75 (PES) 325–375 Gb

150 (PES)+ 650–750 Gb+

Illumina

HiseqX

150 (PES)+ 800–900 Gb per

flow cell*

2.6–3 bn (PES)+ <3 days+

Qiagen Gene

Reader

NA† 12 genes; 1,250

mutations

NA† Several days

Sequencing by synthesis: SBS Homopolymer errors Less expensive

and relatively fast

454 GS Junior Upto 600;400

average (SES,PES)*

35Mb+ ∼ 0.1 M+ 10 h+

454 GS Junior+ Upto 1,000;700

average

(SES,PES)+

70Mb+ ∼ 0.1 M+ 18 h+

454GSFLX

TitaniumXLR70

Upto 600;450

mode (SES,PES)+
450Mb+ ∼1 M* 10 h+

454 GS FLX

Titanium XL+
Up to 1,000; 700

mode (SE, PE)+
700 Mb+ ∼1 M+ 23 h+

Ion PGM 314 200 (SES) 30–50 400,000– 23 h

400 (SES) 60–100 Mb+ 550,000+ 3.7 h+

Ion PGM 316 200 (SES) 300–500Mb 2–3 M+ 3 h

400 (SES)+ 600 Mb−1 Gb+ 4.9 h+

Ion PGM 318 200 (SES) 600 Mb−1 Gb 4–5.5 M+ 4 h

400 (SES)+ 1–2 Gb+ 7.3 h+

Ion Proton Up to 200 (SES) Up to 10 Gb+ 60–80 M+ 2–4 h+

Ion S5 520 200 (SES) 600 Mb−1 Gb 3–5 M+ 2.5 h

400 (SES)+ 1–2 Gb+ 4 h+

Ion S5 530 200 (SES) 3–4 Gb 15–20 M+ 2.5 h

400 (SES)+ 6–8 Gb+ 4 h+

Ion S5 540 200 (SES)+ 10–15 Gb+ 60–80 M+ 2.5 h+

Single-molecule

real-time long reads or (Pacific

BioSciences)

Moderate throughput

and equipment are very

expensive

Fast detection Pacific

BioSciences RSII

∼20Kb 500 Mb−1 Gb+ ∼55,000+ 4 h+

Pacific

BioSciences Sequel

8–12Kb 3.5–7 Gb+ ∼350,000+ 0.5–6 h+

Oxford

Nanopore

MK1MinION

Up to 200Kb Up to 1.5 Gb >100,000 Up to 48 h

Oxford

Nanopore

PromethION

NA† Upto 4 Tb+ NA† NA†

+Manufacturer’s data; *Rounded from Field Guide to next-generation DNA sequencers and 2014 update; † Information is not available, as this product has been developed recently.

CRT, Cyclic Reversible Termination; NA, Not Available; PES, Paired End Sequencing; SBS, Sequencing by Synthesis; SES, Single End Sequencing.
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FIGURE 4 | Timeline of the introduction of the next-generation DNA sequencing technologies and platforms.

fluorophore-labeled dNTP (115). Qiagen’s Gene Reader usually
runs up to four flow cells at a time, with each flow cell running
up to ten samples. The flow cells can be added in mid-run via a
“turntable” within the instrument. Additional information on the
Qiagen Gene reader can be obtained at http://www.qiagen.com.

ABI SOLiD (Sequencing by Oligonucleotide
Ligation and Detection) System
Applied Biosystems, through the Life Technology subsidiary,
introduced the SOLiD platform in 2007. The system employs
a unique chemistry for sequencing by ligating oligonucleotide
adapters to DNA fragments and immobilizing the ligation
products on beads, which are then placed on a water-oil
emulsion (116). The beads on which DNA amplification occurs
are deposited on glass slides and subjected to sequential
hybridization with a universal PCR primer complementary to
the adapters. The ligation step is then followed by fluorescence
detection.

Ion Torrent Sequencing Technology (PGM,
Proton, S5 Series)
Ion Torrent introduced the personal genome machine (PGM)
in 2010 as a cost effective platform for DNA sequencing (117).
Unlike other sequencing technology, Ion Torrent does not make
use of optical signals (118) but rather utilizes an enzymatic
cascade to generate a signal. The Ion Torrent system utilizes high-
density micro-machined wells to carry out nucleotide additions
in a massively parallel approach. Each micro-well contains a
different DNA template. There is an ion-sensitive layer and an
ion-sensor located under each well. The technology works on
the principle of detecting the proton (H+) released during the
incorporation of each dNTP in a growing DNA template. The
release of H+ ion results in a change in pH that is detected
by an integrated ion-sensitive, field-effect transistor (ISFET)
(117). In the case of two identical bases, the output voltage

is doubled. Ion torrent platform can generate upto 10 Gb of
sequence data in a single run, with a maximum of 50 million
reads having an average read length of 200 bases. The PGM
can also provide 5.5 million reads having an average read length
of 400 bp, producing a maximum of 2 Gb of sequence data
from 318 V2 chip. A notable aspect of this technology is the
size-selection step in which sequencing of longer fragments
is omitted (https://www.thermofisher.com/in/en/home/brands/
ion-torrent.html). Additional information about Ion Torrent
technology can be obtained from https://www.thermofisher.com/
in/en/home/brands/ion-torrent.html.

THE THIRD GENERATION OF
SEQUENCING TECHNOLOGY

At present, the described sequencing technologies are the most
commonly used for metagenome projects, however, sequencing
technologies have undergone rapid advances during the past few
years to attempt to resolve the biases associated with the current
methods and to obtain a better balance between data yield, read
length, and cost. These efforts have resulted in third generation
sequencing technologies, such as Oxford Nanopore (119), and
PacBiosequencing platforms (120) which are single-molecule and
real-time technologies that reduce amplification bias, as well
as short read length problems. The reduction in the cost and
time presented by these sequencing methods are valuable asset.
Although the error rate with the newer technologies is much
higher relative to the other described sequencing technologies,
this problem can be addressed by increasing the sequencing
depth.

Pacific Biosciences
Pacific Biosciences established the first DNA sequencer that
utilizes a single-molecule, real-time sequencing (SMRT)
approach. This sequencing platform has become one of the most
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widely used third-generation sequencing technologies (121). The
platform is based on the sequencing by synthesis principle. Pacific
Biosciences makes use of the same fluorescent dyes as other
NGS technologies, however, instead of carrying out the cycles of
nucleotide amplification in the same manner as other sequencing
technologies, the signals emitted upon the incorporation
of the nucleotides are detected in real time. Sequencing is
carried out on a chip (SMRT cell) that contains several zero
mode wave (ZMW) guides. A single DNA polymerase is
immobilized to the bottom of each ZMW guide with a molecule
of single stranded DNA template (122). Four phospholinked
nucleotides, each labeled with a different fluorescent dye
producing a distinct emission spectrum, are also added to
SMRT cells. Once the nucleotide is incorporated by the DNA
polymerase, a light signal is produced and a base call is made and
recorded (122).

Helicos Biosciences
Heliscope was released by Helicos Biosciences in 2007. It
is also a single-molecule sequencing device. Sequencing is
carried out in a glass flow cell with 25 channels for
samples. The samples can either be replicates of the same
sample or different samples. The Heliscope platform utilizes
emulsion PCR amplification of DNA fragments in order to
obtain significantly higher signals for reliable base detection
by multiple charge-coupled device cameras. Single-molecule
sequencing methods have the potential to deliver consistently
low error rates by eliminating amplification-related bias,
intensity averaging, and synchronization problems (123, 124).
In the Heliscope platform, 100–200 oligonucleotide fragments
are initially immobilized on a proprietary substrate within
a microfluidics flow cell. Fluorescence-labeled nucleotides
are then introduced individually and are incorporated by
DNA polymerase into the growing complementary strand.
The fluorophore-bearing nucleotide increases detectability and
eliminates the need for amplification of the DNA template.
Images are recorded and analyzed to identify the nucleotide
that has been incorporated into the growing strand before the
cycle begins with a different fluorescently-labeled nucleotide. At
present, the Heliscope can only provide a read length of 35
nucleotides (111). Additional information can be obtained at
http://www.helicosbio.com.

Oxford Nanopore Sequencing
Oxford Nanopore Technologies (ONT) is at the forefront
of developing nanopore sequencing technology (http://www.
nanoporetech.com/). TheNanopore platform does not require an
amplification step as a part of library preparation. The novelty
of this approach is that the DNA strand to be sequenced can
be directly analyzed. Oxford Nanopore Technologies introduced
the MinION (125) device in 2014. It has the potential to
provide longer reads with better resolution of repeated sequence
elements and structural genomic variants (126). MinION is a
mobile, single-molecule Nanopore sequencer measuring four
inches in length and is connected to a laptop with USB 3.0.
Nanopore sequencing technology is based on the principle of
modulation of the ionic current as a DNA molecule traverses

through the nanopore, revealing characteristics of the molecule
such as conformation, length and diameter. The pore consists
of a protein within a conductive electrolytic solution which
creates a small potential gradient across the protein pore
(127). MinION mk1B is a pocket-sized portable sequencing
device, containing 512 nanopore channels, and can be directly
linked to a computer for data collection. More recently, a
more advanced device, “PromethION,” has been commercialized
(127). PromethION is a benchtop sequencer possessing 48
individual flow cells, each consisting of 3,000 pores that are
equivalent to 48 MinIONs processing 500 bp/s (128). The
capabilities of this instrument provide sequencing power that
is sufficient to conduct sequencing of large genomes, such
as the human genome. Additional information on Oxford
Nanopore sequencing technologies can be obtained at https://
www.nanoporetech.com.

So far, the present review has provided an overview of the
first through third generations of sequencing technology that
have provided significant improvements in the ability to conduct
microbiome research. Metagenomic and other omic approaches
are the most effective methods that can be used to characterize
microbial communities, as well as their metabolic activity. It
is now feasible to obtain information on the composition
(taxa), diversity, pathogenesis, evolution, and drug resistance
of microbes. The selection of any of the above mentioned
platforms, however, should be mainly dependent on the aim,
design, and purpose of the study. Illumina sequencing technology
has made tremendous advances in data output and cost efficiency
over the past few years and as a result, presently dominates
the NGS market (129, 130). Illumina sequencing technology
has been used extensively in numerous microbiome research
projects (131–133), including the Human Microbiome Project
(44). While both Ion Torrent and Illumina sequencers provide
a number of advantages in terms of their cost and efficiency,
the short read lengths they provide make them less appropriate
for addressing a number of scientific questions, including
detection of gene isoforms, methylation detection, and genome
assembly (118). SMRT (single-molecule real-time) sequencing
platforms offer approaches that are more suited for these
research objectives. Since PacBiosequencing generates longer
reads that provide longer scaffolds (134–136), it is well suited
for denovo genome assembly. The commercial availability of
MinION sequencers by Oxford Nanopore Technologies, which
resemble a USB flash drive in appearance, has also enabled
applications that require long-read sequencing (137, 138). The
efficiency, long read lengths, and single-base sensitivity make
nanopore sequencing technology a promising approach for high-
throughput sequencing. The MinION system has been used
for sequencing the genomes of infectious agents, including
the analysis of bacterial antibiotic resistance islands (137), the
influenza virus (139) and genome surveillance of the Ebola
virus (140). The advancements in high-throughput sequencing
technologies now provide the opportunity to choose different
sequencing platforms to conduct microbiome research. In a
comparative analysis of the Illumina MiSeq, Ion Torrent PGM,
and 454 GS Junior sequencing platforms, Loman et al. (141)
reported that Illumina provided the highest output per run
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TABLE 2 | Lists of software’s used in metagenomics analysis.

Software Application Link (website) References

FastQC FastQC, a java based application is performed via a series of analysis modules.

FastQC can either run in a non-interactive mode or in a standalone interactive mode.

FastQC is a quality control tool used for high-throughput sequence data via a series

of modular options and giving graphical results of length distribution, quality per base

sequence, N numbers, GC content, over representation and duplication.

http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

(175)

Fastx-Toolkit Fastx is a command based tool kit for the quality control of short-reads and allows

processing, format conversion, collapsing and cutting on the basis of sequence

identity and length.

http://hannonlab.cshl.edu/fastx_toolkit/index.

html

(176)

PRINSEQ A standalone tool allows integration and analysis into the existing data processing

pipelines. PRINSEQ as a tool offers a computational resource that is able to handle

huge amount of data generated by next-generation sequencers. It is used for

sequences trimming based on in the di-nucleotides occurrences and the sequence

duplication (mainly 5′/3′).

http://prinseq.sourceforge.net/ (177)

NGS QC Toolkit NGS QC Toolkit encompasses user-friendly standalone tools for the quality control of

the sequence data generated by next-generation sequencing platforms. The analysis

is performed in a parallel environment.

http://www.nipgr.res.in/ngsqctoolkit.html (178)

Meta-QC-Chain Meta-QC-Chain is a tool for the quality control analysis performed in parallel

environment. Performs mapping against 18S rRNA databases in order to remove the

eukaryotic contaminant sequences.

http://www.computationalbioenergy.org/qc-

chain.html

(179)

Mothur Mothur is an open-source, expandable software used for the quality analysis of reads

to taxonomic classification, ribosomal gene meta-profiling comparison and calculus

of diversity estimators.

http://www.mothur.org/ (180)

QIIME QIIME pipeline is designed for the task of analyzing microbial communities sampled

via a marker gene (16S or 18S rRNA) amplicon sequencing. In its heart pipeline

QIIME performs quality pre-treatment of raw-reads, calculate estimates diversity

estimates, taxonomic annotation and comparison of metagenomic data.

http://qiime.org/ (181)

MEGAN MEGAN is a graphical interface tool that allows both taxonomic as well as functional

analysis of metagenomic reads. It is based on the BLAST output of short reads and

performs comparative metagenomics.

http://ab.inf.uni-tuebingen.de/software/megan/ (20)

CARMA CARMA provides a clear quantitative and statistical characterization of phylogenetic

classification of the reads based on Pfam conserved domains.

http://omictools.com/carma-s1021.html (182)

PICRUSt PICRUSt is a tool that serves in the field of metagenomic analysis where the

prediction of the metabolic potential is done from the taxonomic information obtained

via 16S rRNA meta-profiling projects. PICRUSt could be thought of as an automated

substitute to manually mining the gene families that are believed to be present in

organisms whose sequences are found in a 16S ribosomal RNA.

http://picrust.github.io/picrust/ (183)

TETRA TERTA is a web-based stand alone program used for the Taxonomic classification

and comparison of tetra nucleotide patterns with in a DNA sequence.

http://www.megx.net/tetra (184)

PhylophytiaS Composition-based classifier of sequences based on reference genomes signatures https://omictools.com/pps-tool (185)

MOCAT MOCAT is a highly configurable and modular pipeline that includes the quality

treatment of metagenomic reads based on single copy marker genes classification

and gene-coding prediction. The pipeline makes use of a state-of-the-art program to

map quality control and assemble reads from metagenome samples sequenced at a

very high depth (several billion base pairs).

http://www.bork.embl.de/mocat/ (186)

Parallel-meta Parallel-meta is a comprehensive and automotive software package that offers fast

data mining and metabolic function across large number of metagenomic datasets.

The functional annotation is based on BLAST best hit results.

http://www.computationalbioenergy.org/

parallel-meta.html

(187)

MetaclusterTA MetaclusterTA is a tool used for the Taxonomic annotation that is based on the

binning of reads and contigs. Dependent on reference genomes.

http://i.cs.hku.hk/~alse/MetaCluster/ (188)

MaxBin MaxBin software is used for the unsupervised binning of metagenomic sequences

based on an Expectation-maximization algorithm. For user’s expediency MaxBin

reports genome-related statistics including GC content, genome size and

completeness.

http://bowtie-bio.sourceforge.net/index.shtml (189)

Amphora and

Amphora2

Amphora and Amphora2 is used for the Metagenomic phylotyping via single copy

phylogenetic marker genes classification.

http://pitgroup.org/amphoranet/ (102, 190)

BWA BWA is an algorithm used for the mapping of short-low-divergent sequences to large

references. It is based on Burrows–Wheeler transform.

http://bio-bwa.sourceforge.net/ (191)

(Continued)
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TABLE 2 | Continued

Software Application Link (website) References

Bowtie Bowtie is a fast short read aligner to long reference sequences based on

Burrows–Wheeler transform.

http://bowtiebio.sourceforge.net/index.shtml (192)

Genometa Genometa is a graphical interface applied for taxonomic and functional annotation of

short-reads metagenomic data.

http://genomics1.mhhannover.de/genometa/ (193)

SOrt-ITEMS SOrt-Items is a tool used for taxonomic annotation via alignment-based orthology of

metagenomic reads.

https://omictools.com/sort-items-tool (194)

DiScRIBinATE Taxonomic assignment by BLASTx best hits classification of reads. https://www.westgrid.ca/support/software/

discribinate

(195)

IDBA-UD IDBA-UD is a denovo assembler of metagenomic sequences with uneven depth. http://i.cs.hku.hk/~alse/hkubrg/projects/

idba_ud/

(196)

MetaVelvet MetaVelvet is a denovo assembler of metagenomic short reads. http://metavelvet.dna.bio.keio.ac.jp/ (197)

RayMeta RayMeta, a denovo assembler of metagenomic reads and taxonomy profiler by Ray

Communities.

http://denovoassembler.sourceforge.net/ (198)

MetaGeneMark MetaGeneMark is a gene coding sequences predictor from metagenomic sequences

by heuristic model.

http://exon.gatech.edu/index.html (199)

GlimmerMG GlimmerMG is a gene coding sequences predictor from metagenomic sequences by

unsupervised clustering.

http://www.cbcb.umd.edu/software/glimmer-

mg/

(200)

FragGeneScan FragGeneScan is a gene coding sequences predictor from short reads. http://sourceforge.net/projects/fraggenescan/ (201)

CD-HIT CD-HIT is a tool used for clustering and comparing of sequences of nucleotides or

protein.

http://weizhongli-lab.org/cd-hit/ (202)

HMMER3 HMMER3 is a free and commonly used software package for sequence analysis. It is

a Hidden Markov based model used to perform sequences alignments. Used for the

identification of the homologus nucleotide and protein sequences

http://hmmer.janelia.org/ (203)

BLASTX Basic local alignment of translated sequences http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi (203)

MetaORFA MetaORFA is applied for the assembly of peptides obtained from predicted ORFs. Website not available (204)

MinPath MinPath is a tool used for reconstruction of pathways from protein family predictions. http://omics.informatics.indiana.edu/MinPath/ (205)

MetaPath MetaPath is used for the identification of metabolic pathways that are differentially

abundant within the metagenomic samples.

http://metapath.cbcb.umd.edu/ (206)

GhostKOALA GhostKOALA is KEGG’s internal annotator of metagenomes by k-number assignment

by GHOSTX searches against a non-redundant database of KEGG genes.

http://www.kegg.jp/ghostkoala/ (207)

RAMMCAP RAMMCAP is used for the metagenomic functional annotation and data clustering. http://weizhong-lab.ucsd.edu/rammcap/cgi-

bin/rammcap_2d.cgi

(208)

ProViDE ProViDE is a tool for the analysis of viral diversity in metagenomic samples. https://omictools.com/provide-tool (209)

Phyloseq Phyloseq is a tool-kit for raw reads pre-processing, diversity analysis and graphics

production. It is an R, Bioconductor package.

https://joey711.github.io/phyloseq/ (210)

Metagenome

Seq

MetagenomeSeq is designed to determine the analysis of differential abundance of

16S rRNA gene in metaprofiling data. It is also designed to address the effects of

both under-sampling and normalization of microbial communities on the basis of

disease association detection.

http://bioconductor.org/packages/release/

bioc/html/metagenomeSeq.html

(211)

Shotgun

Functionalize R

Shotgun Functionalize is an R-Package for the functional assessment of

metagenomic data. The package includes tools designed for importing, annotating

and visualizing metagenomic data generated via high-throughput sequencing.

http://shotgun.math.chalmers.se/ (212)

Galaxy portal Galaxy portal is a web repository of computational tools that can be run without

informatics expertise. It is a graphical interface and free service.

https://usegalaxy.org/ (213)

MG-RAST MG-RAST an open source web application is used for the automatic phylogenetic

and functional analysis of metagenomes. MG-RAST is one of the biggest repositories

for metagenomic data. It is a Graphical interface, web portal and free service.

http://metagenomics.anl.gov/ (214)

IMG/M IMG (Integrated Microbial Genomes) system serves as a community resource for the

analysis, functional annotation and phylogenetic distribution of genes and

comparative metagenomics. It is a graphical interface, web portal and free in service.

https://img.jgi.doe.gov/ (215)

Phinch Phinch is an open source, interactive exploratory data visualizing tool intended to

alleviate the analysis of meta-omic datasets. The main features of this software are

streamlined visualization workflow, sleek user interface, novel exploration of larger

datasets. Accessible via web browser.

http://phinch.org (215)

(Continued)
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http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi
http://omics.informatics.indiana.edu/MinPath/
http://metapath.cbcb.umd.edu/
http://www.kegg.jp/ghostkoala/
http://weizhong-lab.ucsd.edu/rammcap/cgi-bin/rammcap_2d.cgi
http://weizhong-lab.ucsd.edu/rammcap/cgi-bin/rammcap_2d.cgi
https://omictools.com/provide-tool
https://joey711.github.io/phyloseq/
http://bioconductor.org/packages/release/bioc/html/metagenomeSeq.html
http://bioconductor.org/packages/release/bioc/html/metagenomeSeq.html
http://shotgun.math.chalmers.se/
https://usegalaxy.org/
http://metagenomics.anl.gov/
https://img.jgi.doe.gov/
http://phinch.org
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TABLE 2 | Continued

Software Application Link (website) References

CAMERA CAMERA is an important tool that aims to bridge the gaps and to develop methods

so as to monitor microbial communities of the oceans. CAMERA’s databases

incorporate both the genomic and metagenomic datasets, metadata, results from the

pre computed analysis and softwares that endorse commanding cross-analysis of

the environmental metagenomes.

https://omictools.com/camera-2-tool (216)

Meta Comp Meta Comp is a graphical inclusive analysis tool that encompasses a series of

statistical analysis approaches along with visualized results for comparative analysis

of metagenomics as well as other meta-omics data sets. The software has the

features to read files generated via different upstream analysis programs. It has also

got the features to automatically choose two-group sample test.

http://cqb.pku.edu.cn/ZhuLab/MetaComp/ (216)

(1.6Gb/run, 60Mb/h) and the lowest error rates. In a study
comparing different sequencing platforms (Ion Torrent PGM,
Illumina MiSeq and HiSeq) for the shotgun sequencing of six
human stool samples, Clooney et al. (142) concluded that the
best assembly values were obtained using the Illumina HiSeq
platform, in which 10 million reads per sample were produced.
In contrast, the Illumina MiSeq and Ion Torrent PGM did not
produce a sufficient number of reads to produce an adequate
genome assembly (143).

CORRELATION BETWEEN THE
MICROBIOME AND INFECTIOUS
DISEASES

Human gut microbiome signatures exhibit individual specificity.
There is a high degree of inter individual variation that is based
on both host genetics and environmental factors (144, 145). The
high degree of individual specificity, however, has hampered
our understanding of function of the gut microbiome and its
importance in health and disease. The human gut microbiome
exhibits a high degree of plasticity, mainly in response to
dietary changes that support a healthy gut ecosystem and
minimize disease risk (146).The onset of new methodologies,
including NGS and bioinformatic pipelines, have resulted in a
paradigm shift in the fields of clinical microbiology and infectious
diseases due to the realization of the complex interactions that
occur within the microbiome. The relationship between human
pathogens, infectious diseases, and the gutmicrobiome are slowly
being revealed. Several studies have examined the correlation
between the human gut microbiome and health status (141, 142).
Reports have indicated that while the gut microbiome appears
to be relatively stable under healthy conditions, any qualitative
or quantitative changes in the gut microbiome can result in
functional modifications and disease as reported (144, 147–
149). A rich level of bacterial diversity is considered to be
an indicator of a healthy status, while a low level of bacterial
diversity is correlated with inflammatory, immune, and obesity-
related diseases (58, 144, 147–153). Several studies have indicated
that the human microbiota plays a crucial role in human
health and disease (68, 154–168). Studies have also revealed
that microbial symbiosis plays a central role in the development
of a number of diseases, including liver diseases (156),

metabolic disorders (154), gastrointestinal (GI) malignancy
(157), respiratory diseases (158), autoimmune diseases (160),
and mental or psychological diseases (160). Johnson et al. (169)
discussed the Bacteroidetes, one of main components of the
microbiome, their genetic variability and contrasting effect on
metabolic diseases such as obesity and type II diabetes (169).
Yiu et al. (170) proposed that body weight, metabolism, and
diseases such as obesity are affected by the interplay between
the immune system, metabolism and microbiome (170). In
discussing chronic IBD, Frick and Wehkamp (171) outlined
some of the available therapeutic interventions that can be
used to alter mucosal immunity and the composition of the
microbiome. While studying the molecular aspects of human
gut-brain interactions, Lee et al. (172) demonstrated how the
microbiota influences host physiology and neurodegenerative
and neurological developmental diseases (172).

BIOINFORMATIC PIPELINES FOR
METAGENOMIC DATA ANALYSIS

The advances in NGS have resulted in the production of
massive datasets that are increasingly difficult to analyse
(128). As larger datasets are generated, more sophisticated
computational resources and bioinformatic tools are required.
The interpretation and understanding of metagenomic studies
depend on the computational tools that can be used to
analyse enormous data sets and mine valuable, useful, and
valid information regarding the microbial communities being
studied. Bioinformatic tools used for metagenomic analysis,
especially for translating raw sequences into meaningful data, are
continually developing with the aim of providing the ability to
examine both the taxonomic and the functional composition of
diverse metagenomes (173, 174). A number of the specialized
software programs available for analysing the metagenomic data
are listed (Table 2). Based on the list provided, an example
of a comparative analysis pipeline is presented in the present
review that takes into consideration user friendliness, ease of
access, open source availability, ability to analyse metagenomic
datasets, and ability to provide graphical representations of the
analyzed data (Figure 5). A description of the software (MG-
RAST, EBI, QIIME and Mothur) used in the different pipelines
is described in Table 3, which provides a detailed summary
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FIGURE 5 | Overview of the workflow used by metagenomic analysis tools (QIIME, Mothur, EBI and MG-RAST).

of the functionality and features of the mentioned software
programs. The four pipelines share several steps during the
analysis such as quality control, clustering, and annotation
(Figure 5).

METAGENOMIC DATA ANALYSIS
SOFTWARE: COMMAND BASED VS.
GRAPHICAL USER INTERFACE

As comprehensive metagenomic studies are becoming more
common, they are yielding novel and important insights into
the microbial communities in diverse environments; from
terrestrial to aquatic ecosystems and from human skin to the
human gastrointestinal tract. Advances in NGS have made
it more possible than ever for researchers to conduct whole
genome sequencing. The analysis of the datasets obtained from
NGS is complex and require an intelligent and systematic
approach to process the data efficiently. The results obtained
from any metagenomic study relies on in silico computational

tools that can analyse large data sets and can mine and
highlight various aspects about the community being examined.
Although the tools and databases developed to investigate
the taxonomic composition of a microbial community and
provide information on the functional aspects of the community
are becoming more elaborate and complex, though CLC
microbial genomic package offered by Qiagen are good for
these analysis. Nanopore sequencing technology has presented
an option for an analysis pipeline, with novel options for
assembly and annotation. Figure 6, presents the workflow
involved in metagenomic analysis, and indicates all the
steps and tools used for analyzing the data generated from
metagenomic sequencing. The metagenomic pipeline can utilize
any of the presented approaches, based on type of sequencing
data (targeted metagenomics or shotgun metagenomics). The
flowchart summarizes the basic steps that are followed in the
analysis pipeline starting from preprocessing of the sequencing
data to the final extraction, storage, and presentation of the data.
The most popular tools, along with the databases and algorithms
employed for the analysis, are indicated.
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TABLE 3 | Comparative workflow of the four most commonly used bioinformatics pipeline for analyzing metagenomic datasets.

EBI MGRAST QIIME/QIIME 2 MOTHUR

License Free open-source Free open-source Free open-source Free open-source

Implementation (release

candidate)

Python Python Python C++

Current Version available

(March 2018)

4.1 4.0.3 1.9.1 and 2017.6.0,

respectively

1.39.5

Website http://www.ebi.ac.uk/

metagenomics

http://metagenomics.anl.

gov/

http://qiime.org/ and

https://qiime2.org/

http://www.mothur.org/

Primary Usage GUI GUI CL and GUI, respectively CL

Amplicon data Analysis Yes Yes Yes Yes

Whole genome shotgun

analysis

Yes Yes Yes but only experimental No

Sequencing technology

compatibility

Sanger, PacBio, Ion Torrent,

Illumina, Nanopore

Sanger, PacBio, Ion Torrent,

Illumina, Nanopore

Sanger, PacBio, Ion Torrent,

Illumina, Nanopore

Sanger, PacBio, Ion Torrent,

Illumina, Nanopore

Quality control Yes Yes Yes Yes

16S rRNA gene Databases

searched

Silva, Rfam, MAPSeq,

Pfam, TIGRFAM, Prints,

Prosite patterns, Gene 3d

Silva, M5RNA, RDP and

Greengenes

Greengenes, RDP, Siva and

Unite

RDP, Greengenes Silva and

Unite

Alignment method PyNAST, MUSCLE,

INFERNAL

BLAT PyNAST, MUSCLE,

INFERNAL

Needleman-Wunsch,

Blastn, Gotoh

Taxonomic assignment UCLUST, BLAST,

Mothur, RDP

BLAT UCLUST, BLAST,

Mothur, RDP

Wang/RDP approach

Clustering algorithm UCLUST, BLAST Mothur,

CD-HIT

UCLUST UCLUST, BLAST Mothur,

CD-HIT

Mothur, CD-HIT and adapts

DOTUR

Diversity analysis Alpha and beta Alpha Alpha and beta Alpha and beta

Phylogenetic Tree YES YES FastTree Clear cut algorithm

Visualization T, BC, PC, HM, SC, PCA,

Krona and Circos

T, BC, PC, HM, SC, PCA,

Krona and Circos

T, BC, PC, HM, SC, PCA T, BC, PC, HM, SC, PCA,

Dendrograms, Venn

diagrams

Submitted projects as on

March 2018

Total: 1,653

Public: 1,503

Private:151

Total: 3,24,846

Public:52,615

Private:272,231

NA NA

BC, Bar-Charts; BLAT, Blast like Alignment Tool; CL, Command Line; EBI, European Bioinformatics Institute; GUI, Graphical User Interface; HM, Heat Map; MGRAST, Metagenomic

Rapid Annotations using Subsystems Technology; OUT, Operational Taxonomic Unit; PC, Pie-Charts; PCA, Principal Component Analysis; QIIME, Quantitative Insights into Microbial

Ecology; RDP, Ribosomal Database Project; SC, Stacked Columns; T, Tabulation.

TECHNOLOGY AND THE CHANGING
LANDSCAPE OF METAGENOMIC
RESEARCH

Over the past decade, advancements in NGS have led to a
significant reduction in the cost of genome sequencing. These
technological advances have enabled the sequencing of several
genomes in a day at a cost of approximately $1,000 per
genome (Figure 7). The cost estimates presented in Figure 7

represent (A) cost in U.S, dollars per Mb of sequence data
from 2001 to 2009, (B) cost in U.S, dollars per Mb from
2009 to 2017, (C) cost in U.S, dollars per Genome from
2001 to 2009, and (D) cost in U.S, dollars per Genome from
2009 to 2017. Although sequencing is now relatively easy and
straight forward, NGS technology is not perfect and errors
in the data do occur. Moreover, some regions of the DNA
have not been successfully sequenced. The underlying costs
associated with different approaches to sequencing genomes are
of great importance because they impact the scope and scale of
genomic projects. Decreases in sequencing costs have led to the

establishment of large collaborative projects with broad goals and
individual laboratories targeting more specific questions.

The decreasing cost structure of DNA sequencing has had
and will continue to have an impact on genomics and bio-
computing. With the size of databases expanding continuously,
the translation of data into biological insight is becoming
more and more important. As a result, data analysis a more
prominent aspect in obtaining information and value from the
data (217). Significant analytical efforts are needed to gain useful
insights from the generated data. The fields of microbiology,
biotechnology, and medicine are already benefiting from genome
sequencing efforts, and as costs continue to decrease, the practice
of genome sequencing is expected to become almost routine.
For example, the Sanger Institute is sequencing the genomes of
patients suffering from cancer and rare diseases as part of the
100,000 Genomes Project organized by Genomics England.

Some patients have already benefitted from metagenomic-
based diagnoses and treatments, and researchers are continuing
to gain more knowledge about the genetic variations that cause
a variety of diseases. Sequencing, however, is not the only option
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FIGURE 6 | Flow chart of basic metagenomics steps and tools currently in use.

for genetic analysis. An important part of the Precision Medicine
Initiative, organized by the US National Institute of Health, is to
develop a more predictable and possibly less technically complex
method of genetic analysis. Sequencing, however, appears to be
the only way to comprehensively explore the complex features
of DNA that guide the initiation and progression of a number
of diseases. Additionally, comprehensive sequencing also helps
determine how our DNA keeps us healthy (218).

FUTURE PERSPECTIVES OF
METAGENOMICS AND HUMAN HEALTH

Though the field of metagenomics pre-dates NGS, modern
high-throughput sequencing technologies have greatly
transformed this promising field by enabling a comprehensive
characterization of all microorganisms present in a sample. As
metagenomic approaches become more developed and clinically
corroborated, it is expected that metagenomics will be at the
forefront as a method for diagnosing infectious diseases. When
a complex or unknown infectious disease is encountered, the use
of multiple conventional diagnostic tests can potentially lead to
unnecessary expenses; more importantly, this can also result in
the delay of a diagnosis. Metagenomics can be used to identify

potential pathogens, both known and novel, and can also be used
to assess the state of an individual’s microbiome. As sequencing
become easier, faster, and more cost-effective, it will be possible
to serially characterize the human microbiota to explore
changes that occur in the human microbiome over time. This
knowledge could lead to the development of novel medicines and
approaches for treating infectious diseases. Indeed, metagenomic
studies may become so standard that DNA sequencers could be
used in homes to monitor changes in the stool microbiome of an
individual to guide the maintenance of health.

CONCLUSIONS

All forms of life on this planet are dependent on microbes.
They define an environment and are in turn defined by it. Our
understanding of host-pathogen systems, however, is only in its
infancy. Over the past two decades, sequencing technology, along
with bioinformatic tools, have improved significantly; making it
feasible to explore microbial communities residing within diverse
hosts. There is a strong recognition that the microbial diversity
existing in extreme habitats has largely been unexplored. To gain
insight into this “latent” microbial flora, novel methodologies are
required. NGS technologies have provided a rapid, cost-efficient
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FIGURE 7 | Timeline showing the sequencing cost (A) per Mb until year 2009, (B) per Mb between year 2009 and 2017, (C) per genome until year 2009, (D) per

genome between year 2009 and 2017.

means of generating sequencing data and provided sequencing
platforms that can be used in large genome-sequencing centers,
as well as individual laboratories. Illumina, PacBio, and Applied
Biosystems, have all announced upgraded versions of their
respective DNA-sequencing platforms. These upgrades will
increase high-throughput ability and read length, while at the
same time significantly reduce the cost of sequencing per base.
These developments will significantly contribute to and provide
exciting new opportunities to microbiologists. The integration
of several approaches to biological studies will be necessary to
answer questions about the diversity and ecology of microbial
flora. It is the opinion of the authors of the present review that
the development of better bioinformatic tools for analysing
metagenomic data is urgently needed. The vast amounts of
metagenomic data that will be forthcoming will bring new
challenges for analysing, storing, and transferring data. Genome-
sequencing centers and laboratories are going to become more
dependent on information technology and bioinformatics.
Bioinformatic expertise will increasingly be necessary to analyse
large amounts of data and tomine the data for useful information
about microbial diversity. Metagenomics will play an increasing

role in the fields of medicine, biotechnology, and environmental
science. The authors hope that this review provides a clear
overview of the sequencing platforms and bioinformatic analysis
of software that are available, including their high value and
limitations.
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