42 research outputs found

    Static Spheres of Charged Perfect Fluid Embedded in a Einstein Universe

    Get PDF

    A study of the angular size-redshift relation for models in which Λ\Lambda decays as the energy density

    Full text link
    By modifying the Chen and Wu ansatz, we have investigated some Friedmann models in which Λ\Lambda varies as ρ\rho. In order to test the consistency of the models with observations, we study the angular size - redshift relation for 256 ultracompact radio sources selected by Jackson and Dodgson. The angular sizes of these sources were determined by using very long-baseline interferometry in order to avoid any evolutionary effects. The models fit the data very well and require an accelerating universe with a positive cosmological constant. Open, flat and closed models are almost equally probable, though the open model provides a comparatively better fit to the data. The models are found to have intermediate density and imply the existence of dark matter, though not as much as in the canonical Einstein-de Sitter model.Comment: LaTex, 15 pages including 2 figures (Revised version appeared in CQG

    Cosmic Acceleration With A Positive Cosmological Constant

    Full text link
    We have considered a cosmological model with a phenomenological model for the cosmological constant of the form \Lambda=\bt\fr{\ddot R}{R}, \bt is a constant. For age parameter consistent with observational data the Universe must be accelerating in the presence of a positive cosmological constant. The minimum age of the Universe is H01H_0^{-1}, where H0H_0 is the present Hubble constant. The cosmological constant is found to decrease as t2t^{-2}. Allowing the gravitational constant to change with time leads to an ever increasing gravitational constant at the present epoch. In the presence of a viscous fluid this decay law for Λ\Lambda is equivalent to the one with Λ=3αH2\Lambda=3\alpha H^2 (α=const.\alpha=\rm const.) provided \alpha=\fr{\bt}{3(\bt-2)}. The inflationary solution obtained from this model is that of the de-Sitter type.Comment: a more revised versio

    L.R.S. Bianchi type II Stiff Fluid cosmological model with Decaying Vacuum Energy Density Λ\Lambda in general relativity

    Get PDF
    Locally rotationally symmetric (L.R.S.) Bianchi type II stiff fluid cosmological model is investigated. To get the deterministic model of the universe, we have assumed a condition A=BmA=B^{m} between metric potentials A, BA,~B where nn is the constant. It is shown that the vacuum energy density Λ\Lambda is positive and proportional to 1t2\frac{1}{t^{2}}. The values of deceleration parameter qq, matter-energy density Ωm\Omega_{m} and dark-energy density ΩΛ\Omega_{\Lambda} are found to be in good agreement with the values obtain from 5-years WMAP observations. the predicted value of the jerk parameter agrees with the SNLS SNIa and X-ray galaxy cluster distance data but does not with the SNIa gold sample data. In general, the model represent accelerating, shearing and non-rotating universe.The physical and geometrical behavior of these models are also discussed

    Five Dimensional Cosmological Models in General Relativity

    Full text link
    A Five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ\Lambda. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as Gt(1ω)G \sim t^{-(1-\omega)} whereas the variation for the cosmological constant follows as Λt2\Lambda \sim t^{-2}, Λ(R˙/R)2\Lambda \sim (\dot R/R)^2 and ΛR¨/R\Lambda \sim \ddot R/R where ω\omega is the equation of state parameter and RR is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure
    corecore