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Locally rotationally symmetric (L.R.S.) Bianchi type II stiff fluid cosmological model is investigated. To get
the deterministic model of the universe, we have assumed a supplementary condition A = Bm between
metric potentials A and B , where m is a constant. It is shown that the vacuum energy density Λ is
positive and proportional to 1

t2 . The values of deceleration parameter q, matter-energy density Ωm and
dark-energy density ΩΛ are found to be in good agreement with the values obtain from 5-years WMAP
observations. The predicted value of the jerk parameter is in agreement with the SNLS SNIa and X-ray
galaxy cluster distance data but it is not match with the SNIa gold sample data. In general, the model
represent accelerating, shearing and non-rotating universe. The physical and geometrical behavior of this
model is also discussed.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

One of the outstanding problems in cosmology is the so-called
“cosmological constant” problem. Recent observations of type Ia
supernovae (the Supernova Cosmology Project and the High-Z Su-
pernova Team) [1–4] presented evidence that the expansion of the
universe is accelerating. These teams have measured the distances
to cosmological supernovae by using the fact that the intrinsic lu-
minosity of type Ia supernovae is closely correlated to their decline
rate from maximum brightness, which can be independently mea-
sured. These measurements, combined with red-shift data for the
supernovae, led to the prediction of an accelerating universe. Both
teams obtained Ωm ≈ 0.3 and ΩΛ ≈ 0.7 and strongly ruled out
the traditional (Ωm,ΩΛ) = (1,0) universe. This value of the den-
sity parameter ΩΛ corresponds to a cosmological constant that is
small, nevertheless, nonzero and positive.

Cosmological (or vacuum energy) constant [5–8] is one of the
most theoretical candidates for dark energy. Unfortunately there
is a huge difference of order 10120 between observational (Λ ∼
10−55 cm−2) and the particle physics prediction value for Λ. This
discrepancy is known as cosmological constant problem. Carmeli
and Kuzmenko [9] have recently shown that the cosmological
relativistic theory [10] predicts Λ = 1.934 × 10−35 s−2 which is
in agreement with the measurements recently obtained by the
High-Z Supernova Team and Supernova Cosmological Project [1–4].
There have been several ansätze suggested in which the Λ term
decays with time [11–25]. Chen and Wu [21] have suggested.
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The special ansatz Λ ∝ R−2 (where R is the scale factor of the
Robertson–Walker-metric) which has been modified by several au-
thors [26–31]. However, an accelerating universe cannot be pre-
dicted by all vacuum decaying cosmological models. Several au-
thors have argued in favor of the dependence Λ ∝ 1

t2 in different

context [13–15]. The relation Λ ∝ 1
t2 seems to play a major role in

cosmology [15]. Recently Pradhan et al. [32] have obtained some
L.R.S. Bianchi type II bulk viscous fluid universe with decaying vac-
uum energy density.

A convenient method to describe models close to ΛCDM is
based on the cosmic jerk parameter j, a dimensionless third
derivative of the scale factor with respect to the cosmic time
[33,34]. A deceleration-to-acceleration transition occurs for mod-
els with a positive value of j0 and negative q0. Flat ΛCDM models
have a constant jerk j = 1.

Stiff fluid cosmological models create more interest in the study
of the universe because for these models the speed of light is
equal to the speed of sound and its governing equations have the
same characteristics as those of gravitational field (Zel’dovich [35]).
Barrow [36] has discussed the relevance of stiff equation of state
ρ = p to the matter content of the universe in the early state
of evolution of universe. Wesson [37] has investigated an exact
solution of Einstein’s field equation with stiff equation of state.
Mohanty et al. [38] have investigated cylindrically symmetric Zel’-
dovich fluid distribution in General Relativity. Götz [39] obtained a
plane symmetric solution of Einstein’s field equation for stiff per-
fect fluid distribution. Bali and Tyagi [40] have investigated Bianchi
type I magnetized stiff fluid cosmological model in General Rela-
tivity.
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In this Letter, a new anisotropic L.R.S. (Locally Rotationally Sym-
metric) Bianchi type II stiff fluid cosmological model with variable
Λ has been investigated by assuming a supplementary condition
A = Bm between metric potentials A and B , where m is a con-
stant. The out line of this Letter is as follows: In Section 2, the
metric and the field equations are described. Section 3 deals with
the solutions of the field equations. In Section 3.1 some physical
and geometric properties of the model are described. Section 4
the jerk parameter of this model is driven. Finally, conclusions are
summarized in the last Section 5.

2. The metric and field equations

The metric for L.R.S. Bianchi type II model in an orthogonal
frame is given by

ds2 = gijθ
iθ j, gij = diag(−1,1,1,1), (1)

where the Cartan bases θ i are given by

θ0 = dt, θ1 = Bω1, θ2 = Aω2, θ3 = Aω3. (2)

Here, A and B are the time-dependent metric functions. Assum-
ing (x, y, z) as local coordinates, the differential one forms ωi are
given by

ω1 = dy + x dz, ω2 = dz, ω3 = dx. (3)

The Einstein’s cosmological field equations are given by (with
8πG = 1 and c = 1)

Rij − 1

2
Rgij + Λgij = −Tij . (4)

We consider the energy–momentum tensor in the form

Tij = (p + ρ)uiu j + pgij . (5)

Hence, for energy–momentum tensor and L.R.S. Bianchi type II
model the Einstein’s field equations (4) lead to the following sys-
tem of equations:

2
Ä

A
+ Ȧ2

A2
− 3

4

B2

A4
= −p + Λ, (6)

Ä
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+ B̈

B
+ Ȧ Ḃ
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A4
= −p + Λ, (7)

2
Ȧ Ḃ
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+ Ȧ2
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− 1

4

B2

A4
= ρ + Λ, (8)

where an overdot stands for the first and double overdot for sec-
ond derivative with respect to t .

The spatial volume for L.R.S. Bianchi type II model is given by

V = A2 B. (9)

We define a = (A2 B)
1
3 as the average scale factor of L.R.S. Bianchi

type II model (1) so that the Hubble’s parameter is given by

H = ȧ

a
= 1

3

(
2 Ȧ

A
+ Ḃ

B

)
. (10)

We define the generalized mean Hubble’s parameter H as

H = 1

3
(Hx + H y + Hz), (11)

where Hx = Ḃ
B , H y = Hz = Ȧ

A are the directional Hubble’s parame-
ters in the directions of x, y and z respectively.

The deceleration parameter q is conventionally defined by
q = −aä

ȧ2
. (12)

The scalar expansion θ , shear scalar σ 2 and the average anisotropy
parameter Am are defined by

θ = 2 Ȧ

A
+ Ḃ

B
, (13)

σ 2 = 1

2

(
3∑

i=1

H2
i − 1

3
θ2

)
, (14)

Am = 1

3

3∑
i=1

(�Hi

H

)2

, (15)

where �Hi = Hi − H (i = 1,2,3).

3. Solution of the field equations

The field equations (6)–(8) are a system of three equations with
five unknown parameters A, B , p, ρ , Λ. Two additional constraints
relating these parameters are required to obtain explicit solutions
of the system. Following Bali and Jain [41] and Pradhan et al. [42],
I assume that the expansion (θ ) in the model is proportional to
the eigen value σ 1

1 of the shear tensor σ i
j . This condition leads to

A = Bm, (16)

where m is a constant.
In order to overcome the under-determinacy we have here be-

cause of the five unknown involved in three independent field
equations, I assume that the fluid obeys the stiff fluid equation
of state, i.e.

p = ρ. (17)

From (6)–(8), (16) and (17) we obtain

2B̈ + 4m
Ḃ2

B
= B−4m+3

m
+ 2Λ

m
B. (18)

Let Ḃ = f (B) which implies that B̈ = f f ′ , where f ′ = df
dB . Hence

(18) can be written as

d

dB
f 2 + 4m

f 2

B
= B−4m+3

m
+ 2Λ

m
B. (19)

After integrating, Eq. (19) leads to

f 2 = B−4(m−1)

4m
+ Λ

m(1 + 2m)
B2 + kB−4m, (20)

where k is an integrating constant.
To get deterministic solution in terms of cosmic time t , we sup-

pose k = 0. In this case Eq. (20) takes the form

dB√
B−4(m−1)

4m + Λ
m(1+2m)

B2
= dt. (21)

To get deterministic solution, we assume m = 3
2 . In this case

Eq. (21) reduces to

dB√
1
6 B−2 + Λ

6 B2
= dt. (22)

Integrating Eq. (22) we obtain

B2 =
√

1
sinh

(√
2Λ

t

)
. (23)
Λ 3



H. Amirhashchi / Physics Letters B 697 (2011) 429–433 431
Fig. 1. The plot of energy density ρ vs. t .

Therefore,

A2 =
(

1

Λ

) 3
4

sinh
3
2

(√
2Λ

3
t

)
. (24)

Eqs. (23) and (24) show that Λ > 0. In this case the L.R.S. Bianchi
type II spacetime can be written as

ds2 = −dt2 +
√

1

Λ
sinh

(√
2Λ

3
t

)
(dy + x dz)2

+
(

1

Λ

) 3
4

sinh
3
2

(√
2Λ

3
t

)
(dx + dz)2. (25)

3.1. The geometric and physical significance of model

The energy density ρ , the pressure p and the vacuum energy
density Λ for the model (25) are given by

p = ρ = 15

24
Λ coth2

(√
2Λ

3
t

)
− 3Λ

4
, (26)

Λ = 3

2

(
coth−1

√
20

13

)2 1

t2
. (27)

From (26), we see that energy conditions, ρ � 0 is satisfied under
condition

coth2
(√

2Λ

3
t

)
� 6

5
. (28)

From Eq. (26), it is noted that the proper energy density ρ(t) is
a decreasing function of time and it approaches a small positive
value at present epoch. This behavior is clearly depicted in Fig. 1.

From Eq. (27), we observe that the cosmological term Λ is a de-
creasing function of time and it approaches a small positive value
at late time. From Fig. 2, we note this behavior of cosmological
term Λ in the model. Recent cosmological observations suggest
the existence of a positive cosmological constant Λ with the mag-
nitude Λ(Gh̄/c3) ≈ 10−123. These observations on magnitude and
Fig. 2. The plot of vacuum energy density Λ vs. t .

red-shift of type Ia supernova suggest that our universe may be an
accelerating one with induced cosmological density through the
cosmological Λ-term. Thus, our model is consistent with the re-
sults of recent observations.

The expressions for Hubble parameter H , the scalar of expan-
sion θ , magnitude of shear σ 2, the average anisotropy parameter
Am and the proper volume V for the model (25) are given by
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(
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3

)
Hx = 2

3
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3

(√
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3
t

)
, (29)
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V = 1

Λ
sinh2
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2Λ

3
t

)
. (33)

From (30) and (31) we get

σ 2

θ2
= constant. (34)

The deceleration parameter is given by

q = − äa

ȧ2
= −

[ 4Λ
9 − 4Λ

27 coth2(

√
2Λ
3 t)

8Λ
27 coth2(

√
2Λ
3 t)

]
. (35)

If we put the value of Λ from Eq. (27) we observe that

q � −0.96. (36)

From Eq. (36) we observe that our model is in accelerating phase
and it’s behavior is almost the same as de Sitter universe.

Using Eqs. (26)–(29) we can obtain the matter-energy density
Ωm and dark-energy density ΩΛ as
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Table 1
The values of Ωm and ΩΛ obtain from our model and WMAP.

Parameter Our model WMAP

Ωm 0.155 0.279
ΩΛ 0.731 0.726

Ωm = 9

8

[
5

8
− 3

4
tanh2

(
coth−1

(√
20

13

))]
� 0.155, (37)

and

ΩΛ = 9

8
tanh2

(
coth−1

(√
20

13

))
� 0.731. (38)

From Eqs. (37) and (38) we observe that the values of matter-
energy density Ωm and dark-energy density ΩΛ are in good agree-
ment with the values obtain from 5-years WMAP observations for
ΛCMD model [43]. The compression of these parameters is shown
in Table 1.

4. The jerk parameter of the model

The jerk parameter in cosmology is defined as the dimension-
less third derivative of the scale factor with respect to cosmic time

j(t) = 1

H3

˙̈a
a

(39)

and in terms of the scale factor to cosmic time

j(t) = (a2 H2)′′

2H2
(40)

where the ‘dots’ and ‘primes’ denote derivatives with respect to
cosmic time and scale factor, respectively. The jerk parameter ap-
pears in the fourth term of a Taylor expansion of the scale factor
around a0

a(t)

a0
= 1 + H0(t − t0) − 1

2
q0 H2

0(t − t0)
2 + 1

6
j0 H3

0(t − t0)
3

+ O
[
(t − t0)

4], (41)

where the subscript 0 shows the present value. One can rewrite
Eq. (39) as

j(t) = q + 2q2 − q̇

H
. (42)

Using Eqs. (29) and (35) in (42) we find

j(t) = 3

2

[
sinh
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3
t

)[
−2 + 2 sinh
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3
t

)
cosh3
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×

[
cosh4

(√
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3
t
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. (43)

Now, putting the value of Λ from Eq. (27) in Eq. (43) we obtain

j0 = 0.88+0.21
−0.08. (44)

This value does not overlap with the value j = 2.16+0.81
−0.75 obtained

from the combination of three kinematical data sets: the gold sam-
ple of type Ia supernovae [44], the SNIa data from the SNLS project
[45], and the X-ray galaxy cluster distance measurements [46].
However, it is in consistent with two of the three data sets sep-
arately: the SNLS SNIa set gives j = 1.32+1.37

−1.21 and the cluster set

gives j = 0.51+2.55
−2.00, and it is the gold sample data that yields larger

j = 2.75+1.22 [46].
−1.10
5. Concluding remarks

A new cosmological model based on L.R.S. Bianchi type II cos-
mological models with decaying vacuum energy density is ob-
tained. The model (25) starts with a big bang at t = 0. The expan-
sion in the model decreases as time increases. The proper volume
of the model increases as time increases. Since σ

θ
is constant the

model does not approach isotropy. There is a point type singular-
ity in the model at t = 0 [47]. It is shown that Λ ∝ 1

t2 . Therefore,
as t → 0, Λ → ∞ and when t → ∞ then Λ → 0. In Brans–Dicke
theories the relation like Eq. (27) can be found when one assumes
variable gravitational and cosmological “constant” [13,15] and [17].
Berman [48] also has derived this relation in general relativity.
A positive cosmological constant or equivalently the negative de-
celeration parameter is required to solve the age parameter and
density parameter.

The values of deceleration parameter q, matter-energy density
Ωm , dark-energy density ΩΛ and the jerk parameter for this model
are found to be in good agreement with the present values of
these parameters obtained from observations. It is reasonable to
say that a cosmological model is required to explain acceleration
in the present universe. Therefore, the theoretical model found in
this Letter is in agreement with the recent observations.
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