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A b stra c t : A class o f  exact, static and sphencally symmetric solutions o f Einstein's field 
equations is obtained for a charged perfect fluid distribution representing spheres o f  charged 
perfect fluid embedded in a Einstein universe If an electron is modelled as a charged perfect fluid 
sphere obeying Einstein-Maxwell equations in the background o f Einstein universe, it is found that 
It need not contain negative rest mass density contrary to the result o f Bonnor and Cooperstock [ I ] 
for an electron in an otherwise empty universe
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1. Introduction

The Reissner-Nordstrom solution in curvature coordinates,

ds" = ~ 1 -  {2m/r) + dr^ ~ r^{d9^ + sin-6»J0^)

[̂ 1 -  { 2 m / r )  + (I)

describes the external gravitational field ol a charged fluid spheje at rest at the origin in an 
otherwise empty universe. The arbitrary constants ni and e appearing in cq. (1) are identified 
as the mass and the charge of the fluid sphere respectively. Every internal solution for a 
sphere of charged fluid in general relativity is continued at the boundary r = c/ of the sphere 
with the Nordstrom solution flj. It is physically implausible to visualize a charged fluid 
sphere in an otherwise empty universe. Rather, it appears more realistic to consider charged 
fluid spheres embedded in some cosmological background. In the vicinity of the charged fluid 
sphere, the Nordstrom field will however, dominate over the cosmologi^cal field.
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Consequently, the gravitational field just outside the source of the Nordstrom solution, may 
be described by the Nordstrom solution with a small perturbation exerted by the cosmological 
field.

With this in view, a static spherically symmetric metric is considered in a suitable form 
and a class of internal solutions for spheres of charged perfect fluid has been obtained using 
Einstein-Maxwell’s equations. An exact, static and spherically symmetric solution of 
Einstein's field equations is also obtained for a perfect fluid distribution representing the 
external gravitational field of a charged fluid sphere embedded in a Einstein universe. The 
continuity of the two solutions at the boundary r -  ao^  the charged perfect fluid sphere is 
discussed. Considering a charged perfect fluid sphere as an approximate classical model for 
an electron embedded in a cosmological background of simple Einstein universe, it is shown 
that it need not contain negative rest mass density as against the result of Bonnor and 
Cooperstock for an electron in an otherwise empty universe.

2. The metric and the field equations

The coefficients and 4̂4 of the Reissner-Nordstrom solution have the interesting property 
that in curvature coordinates they satisfy the relation ^ 11̂ 44 = -1. Making use of this relation 
for perfect fluid spheres with charge, it was shown by Gron [2] and Gantreau [3] that such 
spheres give fise to gravitational repulsion. Here, a static spherically symmetric metric is 
considered in the form

J 2 -V+/- , 2 2l jrx2ds ^  - e  dr -  r + sin^ Odep̂  ̂ -h e^dP', 

where v and/are functions of r alone. Einstein’s field equations

= -2^{p + p ) v y  -  pgj +

(2)

(3)

for the metric (2) and with a charged perfect fluid distribution, lead to the following three 
equations

and

[(v'//-) + (l/r^)] -  ( l ,V )  + A = 2p -  2E\,

e ''- f  [(v72) + (v'V2) + {v'/r) -  ( /V /4 )  -  ( /7 2 r )]

+ A = 2 p -  2E\ = 2p -  2E],

[ { ( / ' - v')/r} -  (l/r^)] + ( l/r ')  -  A = 2p + I E I

(4)

(5)

(6)

where a dash O  denotes differentiation with respect to r, Ej is the electromagnetic energy 
tensor given by

Ej = {y4)g! (7)
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where Fy is the electromagnetic field tensor satisfying the Maxwell equations

F. = 0 -  0 ,

and

(8)

(9)
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( 1 1 )

where <t>i is the electromagnetic four potential vector, a  is the charge density of the distribution 
and u is the fluid flow vector satisfying the condition = 1. A comma (,) followed by a 
suffix denotes partial derivative with respect to the coordinates.

3 . A class of internal solutions

We take a(r) to be the electrostatic potential inside a tphere of charged perfect fluid, that is 
0, = (0 ,0,0 Of (r)) with the only surviving compohent of the electromagnetic field tensor Fy as 

= - F j4 = a'. The non-vanishing components of the electromagnetic energy tensor 
given by eq. (7) in this case, are obtained as

E* = El = - E I  = - E ]  = (10)

From eqs. (4), (5) and (10) we get

(v"/2) + (v'^/2) -  ( /V /4 )  -  ( /7 2 r )  -  Z i . a ' f e -

+ ) = 0 .

The substitution of F reduces eq. (11) to the form

- f e ~ ^  + -  4F  -  j  ( f V̂  + 2Fr)]e’^

+ (4/(FV^ + 2Fr)) = 0.

Integrating this equation wc get

^-/ = exp{-J { (2 F V  -  4F -  8 (a ')'/•')/(/=■>' + 2Fr)}dr}

1̂1 |(-4/(FV^ + 2FD) exp{j { (2 F V  -  4F -  8(«')V ^)/

| f V̂  + 2F r)|d r ||d r  + F j,

where AT is a constant of integration, W ith/ being given by eq. (13) in terms of F and a, the 
metric (2) inside the sphere of charged perfect fluid may be written as

ds^ = - { e ^ -  r^[d6^ +  sin^ftf0^) + Fdt^. (14)

(12)

(13)
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Here, F and a  are two arbitrary functions of r satisfying the physical requirements. The 
metric (14) therefore, represents a class of internal solutions for spheres of charged perfect 
fluid. Neglecting the cosmological term, the material distribution inside the sphere of charged 
perfect fluid is given by

P =  (^-7 2 ) {(F'/r) + ( fA 7  + (a')^} -  (l/2r^), (15)

and p = (e'^/2) |(F /r) | ( 2 F V  -  4F -  8(a')V ^)/(FV ^ + 2Fr)j

-  (F'/r) -  (fA 7  -  (a')^} + (4F/r(FV^ + 2Fr)) + ( l/r ^ . (16)

The charge density a  of the distribution is obtained as

a  = VF/2r^) {/'aV^ -  2a"r^ -  4a' rj ,  (17)

4. The external solution

In order to determine the external gravitational field of a charged fluid sphere in a 
cosmological background, we notice that the electrostatic field due to the charge of the 
spherical body is not confined to the sphere only but it spreads through all space given by the 
non-vanishing component F4, = - F ,4 = (e/r^) of the electromagnetic field tensor and 
consequently the electromagnetic energy tensor is also not confined to the sphere only. The 
gravitational field and the associated perfect fluid distribution external to the charged fluid 
sphere is determined by substituting in eqs. (4) -  (6), [1 -  (2m/r) + (eyr^)] with the non-
vanishing components of the electromagnetic energy tensor Ef given by = -  E^ 
= -  £3 = ^4 = (1 /2) as in the case of the Nordstrom solution. Eqs. (4) and (5)
now yield a differential equation

r { ( /n /2r ') -  (l/2r)} + {(2eVr") -  ( l/r ')}  ( l - / )  = 0 . (18)

Integrating this equation we get

€~' = | l  -  K ( r - m f  (l -   ̂ exp|-4^^/wrj|. (19)

where /f is a constant of integration. The metric (2) external to the sphere of charged perfect 
fluid may now be written as

-1

ds^ = -  (l -  (2m/r) + i eyr^) )  | l  -  K ( r - m f  (1 -  (m/r))‘ 

exp|-4e^/m rj|

+ (l -  (2m/r) + (e^/r ‘̂ )]dt^.

dr̂ - (d9̂  +  sin̂ 6d<p'̂)

(2 0 )
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If the charge e of the perfect fluid sphere is put equal to zero, the metric (20) reduces to the 
line-element obtained by Leibovitz [4] as a model of the perfect fluid distribution representing 
a point mass in a Einstein universe. For the constant K = 0, the metric (20) takes the form of 
the Nordstrom solution describing the external gravitational field of a charged fluid sphere in 
an otherwise empty universe. The metric (20) therefore, describes the external gravitational 
field of a charged fluid sphere embedded in a Einstein universe. It may be noted that the line- 
element (20) cannot be reduced to the special static case of the solutions obtained by Vaidya 
and Shah [5,6] for the gravitational field of a charged particle embedded in an expanding and 
in a homogeneous universe. Retaining the cosmological term, the distribution outside the 
sphere of the charged perfect fluid is given by

P= (K/2) ( r -m)^  (l -  {m/r)y^‘*'̂  ’ exp^-4^^//nrj

X {(^V'-') -  (l//-')} + {A/2), (21)

and p  = { K / 2 ) ( r - m ) { \  -  (m/r))"^'*'^' exp|-4eV"*'’) [((^^-5m)/r^j

-f- (eV '-') {(3m -r)3r -  4e^)j -  (A/2).  (22)

5. Boundary conditions and the case of an electron

At the boundary r= a of  the charged fluid sphere, we require the continuity of the metric 
potentials of the two solutions given by eqs, (14) and (20), the continuity of the and the 
continuity of the pressures of the two distributions inside and outside the charged fluid sphere 
given by eqs. (15) and (21), These continuity equations will determine in any specific model 
the radius a of the charged fluid sphere for its given mass m and charge e and the arbitrary 
constants appearing in the solution (14) for the charged fluid sphere. It may be mentioned that 
such general relativistic models of charged perfect fluid spheres embedded in a cosmological 
background have no Newtonian analogue.

We now assume a charged perfect fluid sphere as an approximate classical model for 
an electron. Considering an electron as a charged fluid in an otherwise empty universe, 
Bonnor and Cooperstock [1] have concluded that an electron must contain some negative rest 
mass density. Instead of considering an electron in an otherwise empty universe, we consider 
it in a cosmological background of a simple Einstein universe given by the metric (20). 
Neglecting the cosmological term and substituting for £4 from eq. ( 10), eq. (6 ) can be 
written as

(d/dr) [re^  ̂j = 1 -  r^{2p e

This gives

= 1 -  a - I
internal

| ( 2 P + { a f e  ^^r^dr.

(23)

(24)
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which is the value of the metric potential of the internal solution at the boundary r s  of 
an electron. The metric potential for the external solution at the boundary r = a of an 
electron is given by

external -  (2m/fl) + {l -  K ( a - m f

(25)(l -  (m/a))  ̂ expi

The continuity of the metric potentials g" of the external and internal solutions at the 
boundary r = a of an electron, gives

-  (2m/fl) + [ e ^ ! a \  | l  -  K ( a - m f  (l -  exp(-4c7"w)|

= 1 -  fl ' J  ^2p + { a ' f  e~^^r^dr. (26)

In this case, we find that for a, m and e given for an electron, the arbitrary constant K in the 
left hancf side can always be suitably chosen in such a way that the rest mass density p  need 
not be negative anywhere within the electron.
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