63 research outputs found
PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase
The tRNA(Lys) anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al. (2003) Mol. Microbiol., 50, 129β143]. Means described here to bypass PrrC's self-limiting translation and thermal instability allowed purifying an active mutant form of the protein, demonstrating its oligomeric structure and confirming its anticipated interactions with the nucleotide cofactors of the activation reaction. Mutagenesis and chemical rescue data shown implicate the C-proximal Arg(320), Glu(324) and, possibly, His(356) in anticodon nuclease catalysis. This triad exists in all the known PrrC homologs but only some of them feature residues needed for tRNA(Lys) recognition by the Escherichia coli prototype. The differential conservation and consistent genetic linkage of the PrrC proteins with EcoprrI homologs portray them as a family of restriction RNases of diverse substrate specificities that are mobilized when an associated DNA restriction nuclease is compromised
Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase
The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase;however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase
Unraveling the genetic cause of hereditary ophthalmic disorders in Arab societies from Israel and the Palestinian Authority
Visual impairment due to inherited ophthalmic disorders is amongst the most common disabilities observed in populations
practicing consanguineous marriages. Here we investigated the molecular genetic basis of an unselected broad range of
ophthalmic disorders in 20 consanguineous families from Arab villages of Israel and the Palestinian Authority. Most patients
had little or very poor prior clinical workup and were recruited in a field study. Homozygosity mapping followed by
candidate gene sequencing applying conventional Sanger sequencing or targeted next generation sequencing was performed
in six families. In the remaining 14 families, one affected subject per family was chosen for whole exome sequencing. We
discovered likely disease-causing variants, all homozygous, in 19 of 20 independent families (95%) including a previously
reported novel disease gene for congenital nystagmus associated with foveal hypoplasia. Moreover, we found a family in
which disease-causing variants for two collagenopathies β Stickler and Knobloch syndrome β segregate within a large
sibship. Nine of the 19 distinct variants observed in this study were novel. Our study demonstrated a very high molecular
diagnostic yield for a highly diverse spectrum of rare ophthalmic disorders in Arab patients from Israel and the Palestinian
Authority, even with very limited prior clinical investigation. We conclude that βgenetic testing first' may be an economic
way to direct clinical care and to support proper genetic counseling and risk assessment in these families
Deletion of Mgr2p Affects the Gating Behavior of the TIM23 Complex
The TIM23 complex is a hub for translocation of preproteins into or across the mitochondrial inner membrane. This dual sorting mechanism is currently being investigated, and in yeast appears to be regulated by a recently discovered subunit, the Mgr2 protein. Deletion of Mgr2p has been found to delay protein translocation into the matrix and accumulation in the inner membrane. This result and other findings suggested that Mgr2p controls the lateral release of inner membrane proteins harboring a stop-transfer signal that follows an N-terminal amino acid signal. However, the mechanism of lateral release is unknown. Here, we used patch clamp electrophysiology to investigate the role of Mgr2p on the channel activity of TIM23. Deletion of Mgr2p decreased normal channel frequency and increased occurrence of a residual TIM23 activity. The residual channel lacked gating transitions but remained sensitive to synthetic import signal peptides. Similarly, a G145L mutation in Tim23p displaced Mgr2p from the import complex leading to gating impairment. These results suggest that Mgr2p regulates the gating behavior of the TIM23 channel.Peer reviewe
Deletion of Mgr2p Affects the Gating Behavior of the TIM23 Complex
The TIM23 complex is a hub for translocation of preproteins into or across the mitochondrial inner membrane. This dual sorting mechanism is currently being investigated, and in yeast appears to be regulated by a recently discovered subunit, the Mgr2 protein. Deletion of Mgr2p has been found to delay protein translocation into the matrix and accumulation in the inner membrane. This result and other findings suggested that Mgr2p controls the lateral release of inner membrane proteins harboring a stop-transfer signal that follows an N-terminal amino acid signal. However, the mechanism of lateral release is unknown. Here, we used patch clamp electrophysiology to investigate the role of Mgr2p on the channel activity of TIM23. Deletion of Mgr2p decreased normal channel frequency and increased occurrence of a residual TIM23 activity. The residual channel lacked gating transitions but remained sensitive to synthetic import signal peptides. Similarly, a G145L mutation in Tim23p displaced Mgr2p from the import complex leading to gating impairment. These results suggest that Mgr2p regulates the gating behavior of the TIM23 channel
Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin
Type I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the assistance of the mitochondrial co-chaperonin. This is in contrast to the bacterial chaperonin, which is able to function with the help of co-chaperonin from any source. The goal of our work was to determine structural elements that govern the specificity between chaperonin and co-chaperonin pairs using mitochondrial Hsp60 as model system. We used a mutagenesis approach to obtain human mitochondrial Hsp60 mutants that are able to function with the bacterial co-chaperonin, GroES. We isolated two mutants, a single mutant (E321K) and a double mutant (R264K/E358K) that, together with GroES, were able to rescue an E. coli strain, in which the endogenous chaperonin system was silenced. Although the mutations are located in the apical domain of the chaperonin, where the interaction with co-chaperonin takes place, none of the residues are located in positions that are directly responsible for co-chaperonin binding. Moreover, while both mutants were able to function with GroES, they showed distinct functional and structural properties. Our results indicate that the phenotype of the E321K mutant is caused mainly by a profound increase in the binding affinity to all co-chaperonins, while the phenotype of R264K/E358K is caused by a slight increase in affinity toward co-chaperonins that is accompanied by an alteration in the allosteric signal transmitted upon nucleotide binding. The latter changes lead to a great increase in affinity for GroES, with only a minor increase in affinity toward the mammalian mitochondrial co-chaperonin
The Mitochondrial Protein Translocation Motor: Structural Conservation between the Human and Yeast Tim14/Pam18-Tim16/Pam16 co-Chaperones
Most of our knowledge regarding the process of protein import into mitochondria has come from research employing Saccharomyces cerevisiae as a model system. Recently, several mammalian homologues of the mitochondrial motor proteins were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 complex. We chose a structural approach in order to examine the evolutionary conservation between yeast Tim14/Pam18-Tim16/Pam16 proteins and their human homologues. For this purpose, we examined the structural properties of the purified human proteins and their interaction with their yeast homologues, in vitro. Our results show that the soluble domains of the human Tim14/Pam18 and Tim16/Pam16 proteins interact with their yeast counterparts, forming heterodimeric complexes and that these complexes interact with yeast mtHsp70
- β¦