11 research outputs found

    Electrochemical impedance spectroscopy analysis of hole transporting material free mesoporous and planar perovskite solar cells

    Get PDF
    The future photovoltaic technologies based on perovskite materials are aimed to build low tech, truly economical, easily fabricated, broadly deployable, and trustworthy solar cells. Hole transport material (HTM) free perovskite solar cells (PSCs) are among the most likely architectures which hold a distinctive design and provide a simple way to produce large-area and cost-effective manufacture of PSCs. Notably, in the monolithic scheme of the HTM-free PSCs, all layers can be printed using highly reproducible and morphology-controlled methods, and this design has successfully been demonstrated for industrial-scale fabrication. In this review article, we comprehensively describe the recent advancements in the different types of mesoporous (nanostructured) and planar HTM-free PSCs. In addition, the effect of various nanostructures and mesoporous layers on their performance is discussed using the electrochemical impedance spectroscopy (EIS) technique. We bring together the different perspectives that researchers have developed to interpret and analyze the EIS data of the HTM-free PSCs. Their analysis using the EIS tool, the limitations of these studies, and the future work directions to overcome these limitations to enhance the performance of HTM-free PSCs are comprehensively considered.This publication was made possible by NPRP award (NPRP11S-1210-170080) from Qatar National Research Fund (a member of Qatar Foundation). The findings made herein are solely the responsibility of the authors

    Consequence of aging at Au/HTM/perovskite interface in triple cation 3D and 2D/3D hybrid perovskite solar cells

    Get PDF
    Perovskite solar cells (PSCs) expressed great potentials for offering a feasible alternative to conventional photovoltaic technologies. 2D/3D hybrid PSCs, where a 2D capping layer is used over the 3D film to avoid the instability issues associated with perovskite film, have been reported with improved stabilities and high power conversion efficiencies (PCE). However, the profound analysis of the PSCs with prolonged operational lifetime still needs to be described further. Heading towards efficient and long-life PSCs, in-depth insight into the complicated degradation processes and charge dynamics occurring at PSCs' interfaces is vital. In particular, the Au/HTM/perovskite interface got a substantial consideration due to the quest for better charge transfer; and this interface is debatably the trickiest to explain and analyze. In this study, multiple characterization techniques were put together to understand thoroughly the processes that occur at the Au/HTM/perovskite interface. Inquest analysis using current–voltage (I–V), electric field induced second harmonic generation (EFISHG), and impedance spectroscopy (IS) was performed. These techniques showed that the degradation at the Au/HTM/perovskite interface significantly contribute to the increase of charge accumulation and change in impedance value of the PSCs, hence resulting in efficiency fading. The 3D and 2D/3D hybrid cells, with PCEs of 18.87% and 20.21%, respectively, were used in this study, and the analysis was performed over the aging time of 5000 h. Our findings propose that the Au/HTM/perovskite interface engineering is exclusively essential for attaining a reliable performance of the PSCs and provides a new perspective towards the stability enhancement for the perovskite-based future emerging photovoltaic technology.Scopu

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy

    A review of morphing aircraft

    No full text
    Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is short for metamorphose: however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title “shape morphing”. Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep and chord), out-of-plane transformation (twist, dihedral/gull, spanwise bending) and airfoil adjustment (camber and thickness).Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity or weight, although in certain circumstances these were overcome by system level benefits. The current trend for highly efficient and “green” aircraft makes such compromises less acceptable, calling for innovative morphing designs able to provide more benefits and fewer drawbacks. Recent developments in “smart” materials may overcome the limitations and enhance the benefits from existing design solutions. The challenge is to design a structure that is capable of withstanding the prescribed loads, but is also able to change its shape: ideally there should be no distinction between the structure and the actuation system. The blending of morphing and smart structures in an integrated approach requires multi-disciplinary thinking from the early development, which significantly increases the overall complexity, even at the preliminary design stage. Morphing is a promising enabling technology for future, next generation aircraft. However, manufacturers and end users are still too skeptical of the benefits to adopt morphing in the near future. Many developed concepts have a technology readiness level that is still very low. The recent explosive growth of satellite services means that UAVs are the technology of choice for many investigations on wing morphing.This paper presents a review of the state of the art on morphing aircraft and focuses on structural, shape changing morphing concepts for both fixed and rotary wings, with particular reference to active systems. Inflatable solutions have been not considered, and skin issues and challenges are not discussed in detail. Although many interesting concepts have been synthesized, few have progressed to wing tunnel testing, and even fewer have flown. Furthermore, any successful wing morphing system must overcome the weight penalty due to the additional actuation systems.<br/

    A Review of Morphing Aircraft

    No full text
    corecore