12 research outputs found

    Spatio-temporal patterns of pre-eclampsia and eclampsia in relation to drinking water salinity at the district level in Bangladesh from 2016 to 2018

    Get PDF
    This analysis examines whether salinity in drinking water is associated with pre-eclampsia and eclampsia (PE/E), a leading cause of maternal morbidity and mortality. Bangladesh’s national health information system data were extracted at the district level (n = 64) to assess PE/E rates, and these were overlaid with three environmental measures approximating drinking water salinity, remotely sensed low-elevation coastal zone (LECZ), monthly rainfall data, and electrical conductivity of groundwater (i.e., water salinity). Results from a negative binomial fixed effects model suggest PE/E rates are higher with less rainfall (dry season), lower population density, and that district level rates of PE/E increase with higher groundwater salinity and in the high risk LECZ category closest to the coast. Results suggest that drinking water salinity may be associated with PE/E and that using national health surveillance data can improve understanding of this association. This approach can potentially be leveraged in the future to inform targeted interventions to high risk regions and times

    Improvement of Multiple-Stress Tolerance and Lactic Acid Production in Lactococcus lactis NZ9000 under Conditions of Thermal Stress by Heterologous Expression of Escherichia coli dnaKâ–¿

    No full text
    The effects of nisin-induced dnaK expression in Lactococcus lactis were examined, and this expression was shown to improve stress tolerance and lactic acid fermentation efficiency. Using a nisin-inducible expression system, DnaK proteins from L. lactis (DnaKLla) and Escherichia coli (DnaKEco) were produced in L. lactis NZ9000. In comparison to a strain harboring the empty vector pNZ8048 (designated NZ-Vector) and one expressing dnaKLla (designated NZ-LDnaK), the dnaKEco-expressing strain, named NZ-EDnaK, exhibited more tolerance to heat stress at 40°C in GM17 liquid medium. The cell viability of NZ-Vector was reduced 4.6-fold after 6 h of heat treatment. However, NZ-EDnaK showed 13.5-fold increased viability under these conditions, with a very low concentration of DnaKEco production. Although the heterologous expression of dnaKEco did not effect DnaKLla production, heat treatment increased the DnaKLla level 3.5- and 3.6-fold in NZ-Vector and NZ-EDnaK, respectively. Moreover, NZ-EDnaK showed tolerance to multiple stresses, including 3% NaCl, 5% ethanol, and 0.5% lactic acid (pH 5.47). In CMG medium, the lactate yield and the maximum lactate productivity of NZ-EDnaK were higher than the corresponding values for NZ-Vector at 30°C. Interestingly, at 40°C, these values of NZ-EDnaK were not significantly different from the corresponding values for the control strain at 30°C. Lactate dehydrogenase (LDH) activity was also found to be stable at 40°C in the presence of DnaKEco. These findings suggest that the heterologous expression of dnaKEco enhances the quality control of proteins and enzymes, resulting in improved growth and lactic acid fermentation at high temperature

    Enhancement of nutritive value of tea leaf waste by solid-state fermentation with Lentinus sajor–caju

    No full text
    Nutritional value of tea leaf waste was improved significantly (p<0.05) by solid-state fermentation for 8 weeks with a white rot fungus, Pleurotus sajor-caju. The proximate analysis revealed that crude protein, ash, cellulose-lignin ratio and reducing sugar contents were increased by 2001.53, 117.62, 31.38, and 619.10%, respectively. In contrary, crude fiber, lipid, carbohydrate, lignin, cellulose and hemicelluloses contents were decreased by 40.70, 71.87, 47.65, 35.63, 15.26, and 61.03%, respectively. Ascorbic acid and carotenoid were also increased by 129.17 and 398.79%, respectively. At 7 weeks of fermentation, the crude tea leaf waste extract showed very high CMCase, avicelase, cellobiase and amylase activity, moderate pectinase and poor xylanase activity. Furthermore, In-vitro dry matter digestibility was increased by 50.35% at the end of fermentation. Therefore, it was concluded that P. sajor-caju efficiently degraded tea leaf waste and improved its nutritive value

    Use of Pleurotus sajor-caju in upgrading green jute plants and jute sticks as ruminant feed

    No full text
    In this study, superfluous jute plants and jute stick were converted into upgraded animal feed by solid state fermentation (SSF) using a cellulolytic fungus, Pleurotus sajor-caju. Prior to fermentation, substrates were subjected to several pretreatments such as soaking with water overnight and alkali or lime pretreatment. SSF was carried out with 20 g of substrate in 100 ml conical flask and was incubated at 30ï‚°C for 8 weeks. In all treatments, the highest amount of reducing sugar, soluble protein as well as the cellulolytic activities of three enzymes viz. cellobiase, carboxymethyl cellulase and avicelase were obtained at 6th week of fermentation. Compared to raw, unsoaked substrates, soaking treatment alone could produce 10% more soluble protein in both substrates whereas reducing sugar increment was 5% and 6% in jute sticks and jute plants, respectively. From all treatments, combination of soaking and lime treatment in green jute plants yielded higher value than jute sticks in terms of reducing sugar, soluble protein and enzymatic activity. The radiation doses at 20, 30 and 40 kGy appeared to have no effect on sugar and protein accretion. During eight weeks of fermentation, relatively higher cellobiase activity was found compared to that of carboxymethyl cellulase and avicelase. The present investigation indicates that fungal conversion with pretreatment can turn these lignocellulosic agro-wastes to a nutritionally enriched animal feed by increasing the crude protein and reducing sugar content. However, further research is necessary to develop strategies for industrial scale production to overcome the crisis of nutritionally improved animal feed

    High Improvement in Lactic Acid Productivity by New Alkaliphilic Bacterium Using Repeated Batch Fermentation Integrated with Increased Substrate Concentration

    No full text
    Optically pure lactic acid (LA) is an important chemical platform that has a wide range of industrial and biotechnological applications. Improved parameters for cost effective LA production are of great interest for industrial developments. In the present study, an alkaliphilic lactic acid bacterium, BoM 1-2, was selected among 369 newly obtained bacterial isolates. It was characterized using API 50 CHL kit and identified as Enterococcus hirae BoM 1-2 by 16S rRNA gene sequence analysis. Efficient polymer-grade L-lactic acid production was achieved at pH 9.0 and 40°C. In batch fermentation strategy using 20 g L−1 glucose, 19.6 g L−1 lactic acid was obtained with volumetric productivity of 2.18 g L−1 h−1. While using 100 g L−1 glucose, 96.0 g L−1 lactic acid was obtained with volumetric productivity of 1.07 g L−1 h−1. The highest lactic acid concentration of 180.6 g L−1 was achieved in multipulse fed batch strategy with volumetric productivity of 0.65 g L−1 h−1. To achieve higher productivity, repeated fermentation processes were applied using the two different strategies. In the first strategy, the lactic acid productivity was increased from 1.97 g L−1 h−1 to 4.48 g L−1 h−1 when the total of 10 repeated runs were carried out using 60 g L−1 glucose, but lactic acid productivity decreased to 2.95 g L−1 h−1 using 100 g L−1 glucose. In second strategy, repeated fermentation coupled with gradual increase in glucose concentration from 40 to 100 g L−1 was conducted for 24 runs. A dramatic increase in LA productivity up to 39.9 g L−1 h−1 (18-fold compared to first run) was achieved using 40 g L−1 glucose while volumetric productivity ranging between 24.8 and 29.9 g L−1 h−1 was achieved using 60–100 g L−1 glucose
    corecore