48 research outputs found

    On-line Vis-Nir sensor determination of soil variations of sodium, potassium and magnesium

    Get PDF
    Bu çalışma, Temmuz 23-26, 2016 tarihlerinde Shanghai[Çin]’da düzenlenen 2. International Conference on Agricultural and Biological Sciences (ABS) Kongresi‘nde bildiri olarak sunulmuştur.Among proximal measurement methods, visible and near infrared (Vis-Nir) spectroscopy probably has the greatest potential for determining the physico-chemical properties of different natural resources, including soils. This study was conducted to determine the sodium, potassium and magnesium variations in a 10. Ha field located in Karacabey district (Bursa Province, Turkey) using an on-line Vis-Nir sensor. A total of 92 soil samples were collected from the field. The performance and accuracy of the Na, K and Mg calibration models was evaluated in cross-validation and independent validation. Three categories of maps were developed: 1) reference laboratory analyses maps based on 92 points 2) Full-data point maps based on all 6486 on-line points Vis-Nir predicted in 2013 and 3) full-data point maps based on all 2496 on-line points Vis-Nir predicted in 2015. Results showed that the prediction performance in the validation set was successful, with average R2 values of 0.82 for Na, 0.70 for K, and 0.79 for Mg, average root mean square error of prediction (RMSEP) values of 0.02% (Na), 0.20% (K), and 1.32% (Mg) and average residual prediction deviation (RPD) values of 2.13 (Na), 0.97 (K), and 2.20 (Mg). On-line field measurement was also proven to be successful with validation results showing average R2 values of 0.78 (Na), 0.64 (K), and 0.60 (Mg), average RMSEP values of 0.04% (Na), 0.13% (K), and 2.19% (Mg) and average RPD values of 1.57 (Na) 1.68 (K) and 1.56 (Mg). Based on 3297 points, maps of Na, K and Mg were produced after N, P, K and organic fertilizer applications, and these maps were then compared to the corresponding maps from the previous year. The comparison showed a variation in soil properties that was attributed to the variable rate of fertilization implemented in the preceding year.FarmFUSE - ICT-AGRI - ERA-NETEuropean Commission under the 7. Framework ProgrammeUK Department of - Environment, Food and Rural Affairs - IF020

    Using Science and Technology to Unveil The Hidden Delicacy Terfezia arenaria, a Desert Truffle

    Get PDF
    Terfezia arenaria is a desert truffle native to the Mediterranean Basin region, highly appreci- ated for its nutritional and aromatic properties. Despite the increasing interest in this desert truffle, T. arenaria is not listed as an edible truffle authorized for trade in the European Union. Therefore, our objective was to showcase T. arenaria’s nutritional and chemical composition and volatile profile. The nutritional analysis showed that T. arenaria is a good source of carbohydrates (67%), proteins (14%), and dietary fibre (10%), resulting in a Nutri-Score A. The truffle’s volatile profile was domi- nated by eight-carbon volatile compounds, with 1-octen-3-ol being the most abundant (64%), and 29 compounds were reported for the first time for T. arenaria. T. arenaria’s nutritional and chemical compositions were similar to those of four commercial mushroom and truffle species, while the aromatic profile was not. An electronic nose corroborated that T. arenaria‘s aromatic profile differs from that of the other four tested mushroom and truffle species. Our data showed that T. arenaria is a valuable food resource with a unique aroma and an analogous composition to meat, which makes it an ideal source for plant-based meat products. Our findings could help promote a sustainable future exploitation of T. arenaria and ensure the quality and authenticity of this delicacy.info:eu-repo/semantics/publishedVersio

    Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges

    Get PDF
    Sustainable land use has been identified as one way of tackling challenges related to climate change, population expansion, food crisis and environmental pollution. Disposal of oil palm fresh fruit bunch (FFB) solid wastes is becoming a challenge with an increased demand and production of palm oil. Whilst this poses a challenge, it could be turned into an opportunity by utilising it as a resource and fully valorise it to meet soil and crop demands. This review presents the potentials of FFB solid wastes, which include empty fruit bunch (EFB), mesocarp fibre (MF), palm kernel shell (PKS), as soil ameliorants. The major findings are the following: 1) pyrolysis, gasification, combustion, and composting are processes that can enhance the value of FFB solid wastes. These processes lead to new products including biochar, ash, and compost, which are valuable resources that can be used for soil improvement. 2) The application of EFB mulch, ash from EFB, MF and PKS, biochar from EFB, and PKS, and compost of EFB, and MF led to improvement in soil physico-chemical properties, and growth and performance of sweet corn, mushroom, oil palm, sweet potato, cauliflower plant, banana, maize, cocoa, cassava, eggplants, and pepper. However, reports show that EFB compost and ash led to decrease in growth and performance of okra. Therefore, the use of appropriate conversion technology for FFB solid wastes as soil ameliorants can significantly improve crop yield and soil properties, reduce environmental pollution, and more importantly increase income of oil mill processors and savings for farmers

    Theoretical analysis of the spatial variability in tillage forces for fatigue analysis of tillage machines

    Get PDF
    This paper presents a new theoretical model to describe the spatial variability in tillage forces for the purpose of fatigue analysis of tillage machines. The proposed model took into account both the variability in tillage system parameters (soil engineering properties, tool design parameters and operational conditions) and the cyclic effects of mechanical behavior of the soil during failure ahead of tillage tools on the spatial variability in tillage forces. The stress-based fatigue life approach was used to determine the life time of tillage machines, based on the fact that the applied stress on tillage machines is primarily within the elastic range of the material. Stress cycles with their mean values and amplitudes were determined by the rainflow algorithm. The damage friction caused by each cycle of stress was computed according to the Soderberg criterion and the total damage was calculated by the Miner's law. The proposed model was applied to determine the spatial variability in tillage forces on the shank of a chisel plough. The equivalent stress history resulted from these forces were calculated by means of a finite element model and the Von misses criterion. The histograms of mean stress and stress amplitude obtained by the rainflow algorithm showed significant dispersions. Although the equivalent stress is smaller than the yield stress of the material, the failure by fatigue will occur after a certain travel distance. The expected distance to failure was found to be df=0.825×106km. It is concluded that the spatial variability in tillage forces has significant effect on the life time of tillage machines and should be considered in the design analysis of tillage machines to predict the life time. Further investigations are required to correlate the results achieved by the proposed model with field tests and to validate the proposed assumptions to model the spatial variability in tillage force

    Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    Get PDF
    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon

    Evaluating oil palm fresh fruit bunch processing in Nigeria

    Get PDF
    Three routes of oil palm fresh fruit bunch (FFB) processing in Nigeria namely, industrial, small-scale and traditional were compared by means of determining fruit losses associated with each route. The fruits that are not recovered after each process were hand-picked and quantified in terms of crude palm oil (CPO), palm kernel (PK), mesocarp fibre (MF) and palm kernel shell (PKS). The energy value of empty fruit bunch (EFB), MF and PKS were used to determine the value of energy lost for each route. Additionally, the environmental implications of disposal of EFB were estimated, and socio-economics of the industrial and small-scale routes were related. The analysis showed that 29, 18, 75 and 27 kg of CPO, PK, MF and PKS were lost for every 1000 kg of FFB processed with the industrial route, whereas 5.6, 3.2, 1.4 and 5.1 g were lost with the small-scale route, respectively. Approximately 89 kWh and 31 kWh more energy were lost from MF and PKS with the industrial route than the other two routes, respectively. An equivalent of 6670 tonnes carbon dioxide equivalent of methane and nitrogen oxide was released due to the disposal of 29,000 tonnes of EFB from one palm oil mill. The monetary value of lost CPO per 1000 kg of FFB processed in the industrial route is more than the labour cost of processing 1000 kg of FFB in the small-scale route. The advantages of the industrial route are high throughput in terms of FFB processed per hour and high quality of CPO; however, high fruit loss is associated with it and therefore, the poorly threshed EFB is recommended to be fed into the small-scale route

    Towards enhancing sustainable reuse of pre-treated drill cuttings for construction purposes by near-infrared analysis : a review

    Get PDF
    Sustainable reuse of pre-treated drill cuttings (a hazardous waste) as part substitute for fine aggregate in concrete for construction purposes is becoming increasingly attractive; however, issues remain. With recent studies focusing on the use of near-infrared spectroscopic technique for non-invasive determination of chloride concentration in concrete structures, this review examines the applicability of this new technique in the rapid determination of other equally important physicochemical characteristics of concrete produced with this hazardous waste. The nature, source, composition, ecological effects of, and management options for drill cuttings are reviewed. Furthermore, the principles of near-infrared diffuse reflectance spectroscopy are highlighted and lessons from its practical applications in soil science and petrochemical, environmental, and civil engineering are discussed. A framework for a rapid near-infrared analysis of concrete produced with pre-treated drill cuttings for enhanced sustainability as a construction material is also proposed
    corecore