17 research outputs found

    Fluid structure behaviour in gas-oil two-phase flow in a moderately large diameter vertical pipe

    Get PDF
    Intermittent flows in vertical pipes occur in many industrial settings including power generation and downstream oil-and gas production. This type of flows include cap bubble, slug and churn flow regimes. These regimes are of interest as downstream processes and control may heavily depend on the intermittency of the inflow. There are a number of correlations that predicts the features in such flows in vertical pipes. Most of the correlations were developed for air and water fluid pair for slug flow regime in vertical pipes with 25 to 50 mm inner diameter. In this paper, an attempt has been made to assess the suitability of several of these correlations specific to slug flow regime for a fluid pair that is different to air-water system. In this work, air-silicone oil flow development was experimentally investigated in a vertical pipe with an inner diameter of 68mm. A Wire Mesh Sensor (WMS) and an Electrical Capacitance Tomography (ECT) sensor were installed in series at four locations (15D, 30D, 45D and 65D) downstream of the mixing section. The flow was visually observed using a high speed camera. The void fraction time series obtained from the WMS and the ECT were used to establish the flow characteristics such as slug length, slug frequency, void fraction in liquid slugs and Taylor bubble velocity. A comparison showed that the void fraction measurements using ECT and WMS are in good agreement. Axial measurements shows that the flow development beyond 45D is minimal. Change in physical properties of the liquid phase is responsible for the deviation associated with the existing slug flow models, particularly those developed to predict the gas holdup in liquid slugs

    Experimental investigation of air–water two-phase flow through vertical 90° bend

    Get PDF
    The behaviour of two-phase air–water mixture flowing from the horizontal to the vertical through a 90° bend has been investigated experimentally. Cross sectional void fraction at nine positions, three upstream and six downstream of the bend have been measured using a conductance probe technique. The bend, manufactured from transparent acrylic resin has a diameter of 34 mm and a curvature (R/D) equal to 5. The superficial velocity of the air was varied between 0.3 and 4 m/s and that for the water between 0.21 and 0.91 m/s. The characteristics signatures of Probability Density Function (PDF), the Power Spectral Density (PSD) of the time series of cross sectionally average void fraction and visual observations have been used to characterise the flow behaviour. For the experimental conditions, plug, slug and stratified wavy flow pattern occurred in the horizontal pipe while slug and churn flow patterns were present in the vertical pipe. The void fraction increased with the gas superficial velocity. The correlation of Nicklin et al. predicted the structure velocity for the slug flow in both horizontal and vertical pipes reasonably accurately. With regards to the frequency of the periodic structures present, some conditions showed little change from upstream to downstream the bend whilst others showed an increasing in the structure frequency from horizontal to vertical pipe. The slug length increased by passing through the vertical bend

    Interrogating the effect of an orifice on the upward two-phase gas–liquid flow behavior

    Get PDF
    Experiments are reported on an air–water mixture flowing through an orifice in a vertical pipe. Time series of cross-sectionally averaged void fractions have been measured at nine axial positions by using a conductance probe technique. A series of six orifices with different thicknesses and apertures were employed. The Probability Density Function, the Power Spectral Density of the time series of cross sectionally averaged void fractions and the cross-correlation of time series from adjacent probes have been obtained to determine the effect of the orifice on the flow characteristics. The diameter area ratio and the thickness of the orifice have a higher influence on bubbly than on slug and churn flows. The recovery length is about 20, 10 and 7 pipe diameter downstream the orifice for these three flow patterns respectively. Homogenization effect needs a minimum liquid superficial velocity. Its position occurs depends on the value of this velocity and on the orifice fractional open area. Just downstream the orifice, the structure velocity increases for the bubbly and slug flows and decreases for churn flow. For bubble and slug flows, there is persistency of the frequency when passing through the orifice from the upstream to the downstream pipe

    The control and maintenance of desired flow patterns in bends of different orientations

    Get PDF
    Multiphase flows are common in industrial settings and bends in pipe lines cannot be avoided due to space limitations. Gas-liquid two phase flows could form material discontinuities that could have adverse effect on productivity and the pipe network due to sudden variations resulting due to the rapid momentum flux variations at fittings such as bends. Research into gas-liquid flow and bends can be motivated by the effect of the bend on the flow downstream of it which could alter the flow pattern occurring and the performance of downstream equipment. Alternatively, the interest might come from what occurs in the bend itself, there could be dryout of the film on the walls and consequent damage to the heat transfer equipment. Here we present measurements made with a number of accurate and fast responding sensors on three cases, two on the effect of the bend and one considering effects in the bend. The results show that the flow transformations occur in two phase flows depending on the orientation of the bend and the change could be captured using fast sweeping measurement techniques. We present the evidence of effectiveness of several types of measurement techniques that could fit into various combinations of phases. The results, point to how to achieve certain flow patterns. Also recommendations are provided regarding the position of any sensor installed to determine flow pattern

    Persistence of frequency in gas–liquid flows across a change in pipe diameter or orientation

    Get PDF
    From a study of the characteristics of structures across a 67/38 mm sudden contraction, using air/silicone oil flows, it has been found that frequencies of the structures (mainly slugs) persist across the contraction. This is in contrast to the velocities and lengths which increase as they move into the smaller diameter pipe. These observations were found for both vertical and 5° upward orientations. A similar persistence of frequency has been found from four other sources in the literature: a vertical (gradual) contraction; a horizontal Venturi; and two cases of horizontal pipe, 90° bend and vertical riser combination. The latter were at two contrasting conditions: (i) at atmospheric pressure with air/water in small diameter (34 mm) pipes; (ii) at 20 bar in larger diameter pipes (189 mm) using nitrogen and naphtha

    Behavior and pressure drop of an upwardly two-phase flow through multi-hole orifices

    No full text
    Experimental results on hydrodynamic behavior and pressure drop of two-phase mixture flowing upwardly in a pipe containing single- and/or multi-hole orifice plate are presented. It was found from the measurement of the void fraction upstream and downstream the orifices that the flow behavior is significantly affected by the layout of the orifice plate used and the flow starts to recover after approximately 7D downstream the orifice. Furthermore, increasing orifice holes number results in decreasing the slip ratio. The standard deviation of the void fraction was used to identify the flow pattern before and after the orifices and found that the critical threshold transition occurred at a standard deviation of 0.2. The flow homogenization necessitates a minimum value of the liquid superficial velocity to occur, and the position where it takes place depends on this velocity and on the orifice holes number. It was also inferred from the two-phase pressure drop data across the orifices that three different flow regimes, where the transition between bubbly-to-slug and slug-to-churn flow, can be identified. An assessment of the predicted two-phase flow multiplier using some previous models dedicated to single-hole orifice was achieved; and found that the model proposed by Simpson et al. is the most reliable one. Single-phase pressure drop was also measured and compared with correlations from literature

    Experimental study of the characteristics of an upward two-phase slug flow in a vertical pipe

    No full text
    Characteristics of the slug flow, mean void fraction, liquid slug and Taylor bubble lengths; and structure frequency were all extracted from the void fraction time series. Average void fractions at nine axial positions have been measured on a 6 m long (and 34 mm diameter) pipe test section by using conductance probes.For the flow conditions used, bubbly (with spherical cap bubble), slug/plug and churn/semi-annular flow patterns were observed. These observations were also confirmed by using statistical numbers.Time series analysis of the mean void fraction and its corresponding PDFs show that the effect of the mixer on the flow becomes, practically, negligible from a distance of 95 pipe diameter.It was found that, generally, the structure velocity can be well predicted from other available correlations in the literature.The theoretical model of Brauner and Ullmann was used to estimate the liquid in slug void fraction. It was inferred that this model is able to predict well the liquid slug void fraction; thus, it can be considered as one of the useful methods for predicting such parameter and to ascertain slug flow regime.The total pressure gradient was found to decrease with increasing gas superficial velocity

    Experimental investigation of a vertically downward two-phase air-water slug flow

    No full text
    The present experimental work investigates the vertical downward two-phase slug flow in a transparent vertical pipe of 34 mm internal diameter. The gas and liquid superficial velocities are in the range of 0–3.27 m/s and 0.015–1.4 m/s respectively. The cross-sectional averaged void fraction has been measured at seven positions along the test section by the intermediary of the conductance probe technique.The results of the development of the void fraction time-series and Probability Density Function along the tube are presented. A good accordance was found between the experimental data and the line transitions of the flow pattern map proposed by (Usui, 1989). We also present results of the structure velocity of the slug flow, where the distribution parameter is found to be lower than unity. A new correlation for the prediction of slug frequencies is also proposed. It agrees well with the data collected in this study with +_10% error

    Experimental investigation of the vertical upward single and two-phase flow pressure drops through gate and ball valves

    Get PDF
    This paper presents an experimental investigation of the pressure drop through valves in vertical upward flows. Experiments were carried out using a 1¼" (DN 32) ball and a gate valve. Five opening areas have been investigated from fully open to the nearly fully closed valve, using air with a superficial velocity of (0-3.5 m/s) and water (0.05-0.91 m/s). These ranges cover single-phase and the bubbly, slug and churn two-phase flow regimes. It was found that for the single-phase flow experiments, the valve coefficient increases with the valve opening and is the same, in both valves, for the openings smaller than 40%. The single-phase pressure drop increases with the liquid flowrate and decreases with the opening area. The two-phase flow pressure drop was found considerably increased by reducing the opening area for both valves. It reaches its maximum values at 20% opening for the ball valve and 19% opening for the gate valve. It was also inferred that at fully opening condition, the two-phase flow multiplier, for both valves, has been found close to unity for most of the tested flow conditions. For the 40 and 20 % valve openings the two-phase multiplier decreases in the power-law with liquid holdup for the studied flow conditions. Models proposed originally for evaluating the pressure drop through an orifice in single-phase and two-phase flows were also applied and assessed in the present experimental data
    corecore