6 research outputs found

    Molecular Biology View on Down syndrome: Review article

    Get PDF
    Background:   Down Syndrome (DS) is a resulting from a defect of the genotype in patients affected by it. The occurrence of this type of disease is very common. It has been associated with causing many genetic diseases with a significant change  in phenotypic pattern. People with this type of disease suffer from intellectual disability that ranges from mild to moderate, delay in growth and the emergence of some distinctive signs in the face. It  leads to Alzheimer’s in some cases. The treatment cost  is very high and exorbitant,   many laboratories have   sophisticated diagnoses methods, but they are expensive and require high skill. Therefore, this disease still needs to develop many genetic methods to facilitate its diagnosis infection rates reduction among humans.The present review article  empasied an overview of DS-associated phenotypes diagnosis and managment of the disease.   Furthermore,we  have also Reviewed further parental diagnosis methods to facilate  moleculr  methods  CSV,  MLPA, FISH, QF-PCR, PSQ, and NGS and  noninvasive dignosis in detail

    Complimentary protein extraction methods increase the identification of the Park Grass Experiment metaproteome

    Get PDF
    Although the Park Grass Experiment is an important international reference soil for temperate grasslands, it still lacks the direct extraction of its metaproteome. The identification of these proteins can be crucial to our understanding of soil ecology and major biogeochemical processes. However, the extraction of protein from soil is a technically fraught process due to difficulties with co-extraction of humic material and lack of compatible databases to identify proteins. To address these issues, we combined two protein extraction techniques on Park Grass experiment soil, one based on humic acid removal, namely a modified freeze-dry, heat/thaw/phenol/chloroform (HTPC) method and another which co-extracts humic material, namely an established surfactant method. A broad range of proteins were identified by matching the mass spectra of extracted soil proteins against a tailored Park Grass proteome database. These were mainly in the categories of “protein metabolism”, “membrane transport”, “carbohydrate metabolism”, “respiration” “ribosomal and nitrogen cycle” proteins, enabling reconstitution of specific processes in grassland soil. Protein annotation using NCBI and EBI databases inferred that the Park Grass soil is dominated by Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes at phylum level and Bradyrhizobium, Rhizobium, Acidobacteria, Streptomyces and Pseudolabrys at genus level. Further functional enrichment analysis enabled us to connect protein identities to regulatory and signalling networks of key biogeochemical cycles, notably the nitrogen cycle. The newly identified Park Grass metaproteome thus provides a baseline on which future targeted studies of important soil processes and their control can be built

    Study of the correlation between archived metal-polluted soils and microbial resistance to antibiotics and metals

    No full text
    Soil contamination with metals is a widespread problem, prominent near mines and industrial facilities. The British Geology Survey via its Geochemical Baseline Survey of Environment (G-BASE) project provides a resource of well-documented soil archives from national and international locations, giving geochemical datasets that comprise metal concentrations in top and profile soil samples. This study focused on G-BASE data and soil samples collected from urban areas of Swansea-Neath-Port Talbot (SNPT) in South Wales (UK), with sampling points at a density of 1 per 0.25km2.This PhD study has evaluated (i) the pollution status of metals in urban soil samples and their potential ecological risk in an urban UK environment, specifically the SNPT area;(ii) the effect of metals on bacterial community and diversity in metal-polluted urbansoils, and (iii) the effect of metals on microbial adaptation to antimicrobial stress and resistance and on genome evolution. A representative selection of soil samples from the G-BASE soil collection was tested to enable completion of culture-independent and culture-dependent ecological studies.The pollution status in the 373 sampled soils was assessed using the pollution index of metals and correlations between metals were assessed. The bacterial community structure was studied in 63 soil samples which evaluated the effect of 16 metals on microbial community composition and diversity. The effect of metal pollution stress on bacterial viability in soils was investigated for resistance to four common antibiotics. Bacterial adaptation to metal pollution and AMR in metal-antibiotic co-exposure responses was also tested in clinically relevant pathogenic bacteria, specifically methicillin-sensitive and -resistant Staphylococcus aureus to identify routes for antimicrobial chemotherapeutic drug discovery. Finally, the effect of metal exposure on the dynamics of genomic adaptation and resistance in bacterial isolates was determined by identification of pan- and accessory genomes and resistome marker genes through whole genome sequencing and bioinformatic analysis
    corecore