53 research outputs found

    Resonance of Double-Diffusive Convection in a Porous Medium Heated with a Sinusoidal Exciting Temperature

    Get PDF
    studied numerically. The left vertical wall of the cavity is heated with a temperature varying sinusoidally in time, while the opposite cold wall is maintained at a constant temperature. The same walls of the cavity are salted with constant and different concentrations (the concentration of the heated wall is higher than that of the cooled one). The remaining horizontal walls are considered adiabatic and impermeable. The parameters governing the problem are the amplitude of the variable temperature (0 £ a £ 1), its period (0.0001 £ t £ 10), the buoyancy forces ratio (-5 £ N £ +5), the Lewis number (0.1 £ Le £ 10) and the thermal Darcy-Rayleigh number (RT = 400). Effects of these parameters on fluid flow, temperature and concentration distributions and mean heat and mass transfers within the cavity are analyzed. Results obtained show that both heat and mass transfers could be significantly enhanced or reduced, with respect to those generated in the case of constant heating conditions by proper choice of the parameters related to the periodic temperature

    Comparison between direct measurements and indirect estimations of hydraulic conductivity for slope deposits of the North-Western Tuscany, Italy

    Get PDF
    Hydraulic conductivity (K) is a relevant engineering geology property of deposits that cover the geological bedrock (Slope Deposits – SD). This parameter is useful for many applications fields such as: simulations of both infiltration and runoff processes, hillslope stability numerical analysis, hydrological studies, soil science and environmental problems. A wide range of methods are available in the literature in order to estimate K. Anyhow, they can be divided into direct measurement (field and laboratory test) and indirect estimations (eg. correlation from grain size, pedotransfer functions). However, many factors (eg. SD grain size, bulk density, organic matter, etc.) can affect the K value hence the determination of K within SD is often a challenge. Moreover, the value of K generally shows an high spatial variability requiring a large number of direct measurements to obtain robust spatial estimations. Indirect methods may be used alternatively or in pair with direct methods. However, relations between K and other soil physical properties are generally suitable only for specific type of soils, therefore, the application of those relations are constrained. In this work a wide (about 200) set of field measurements were performed in North-Western Tuscany in order to assess the variability of K in the vadose zone for SD characterized by different grain size composition. Measurements were carried out by means of both constant and falling head permeameters, as well as double ring infiltrometer. In the test sites engineering geology properties of SD such as bulk density and depth have been collected, moreover, samples have been collected for laboratory analysis. A statistical analysis of the K value has been performed for SD characterized by different grain size distribution and geological bedrock. Moreover, a comparison between the field methods have been also performed. Finally, a comparison between measured and estimated values of K has been done in order to assess the reliability of different equations to predict K. The results show that the K value varies across: different geological settings, the SD profile and the geographic neighborhood of the test site. Moreover, the results highlight that the indirect methods used in this work have to be used carefully in our study area

    Mechanical Behavior of a Novel Nanocomposite Polysulphone - Carbon Nanotubes Membrane for Water Treatment

    Get PDF
    Nowadays, global fresh water shortage is becoming the most serious problem affecting the economic and social development. Water treatment including seawater desalination and wastewater treatment is the main technology for producing fresh water. Membrane technology is favored over other approaches for water treatment due to its promising high efficiency, ease of operation, chemicals free, energy and space saving. Membrane filtration for water treatment has increased significantly in the past few decades with the enhanced membrane quality and decreased membrane costs. In addition to high permeate flux and high contaminant rejection, membranes for water treatment require good mechanical durability and good chemical and fouling resistances. Thus, investigation of the mechanical behavior of water treatment membranes with underlying deformation mechanisms is critical not only for membrane structure design but also for their reliability and lifetime prediction. Compared to ceramic and metallic membranes, polymer membranes with smaller pore size and higher efficiency for particle removal are widely used in seawater desalination with a high applied pressure. However, polymer membranes are mechanically weaker and have lower thermal and chemical stability compared to inorganic membranes. Blending of polymers with inorganic fillers is an effective method to introduce advanced properties to polymer based membranes to meet the requirements of many practical applications. The reinforced polymeric membranes with inorganic fillers can provide desirable mechanical strength as well as mechanical stability. Carbon nanotubes (CNTs) have received considerable attention from academic and industries over the last twenty years. In addition to their excellent electrical and thermal properties, CNTs exhibit outstanding mechanical characteristics due to its instinct mechanical strength and high aspect ratio. For the application of water treatment membranes, CNTs could be the excellent channels for water to go through and therefore, CNTs have proven to be excellent fillers in polymer membranes improving the permeability and rejection properties. In literature, it is reported that the mechanical strength of the polymer membranes was improved with the embedding of CNTs due to reinforcement effect of the more rigid CNTs. The mechanical responses of polymer_CNTs composites depended on the interfacial adhesion between the CNTs and the membrane-based polymer as well as the dispersion and distribution of the CNTs within the polymer matrix. In this study, a vertical chemical vapor deposition reactor was designed in order to synthesize CNTs of high aspect ratio using continues injection atomization. Bundles of high purity (99%) and high quality CNTs were produced by this system. The produced CNTs had diameters ranging from 20 to 50 nm and lengths ranging from 300 to 500 micron (corresponded aspect ratios ranging from 6000 to 25000). A novel polysulphone (PSF) based nanocomposite membrane incorporated with the produced high aspect ratio CNTs was then casted via phase inversion method, at a wide range of CNTs loading (0-5 wt. %), in polysulphone-dimethylformamide solutions using the Philos casting system. The poly(vinylpyrrolidone) was used as pore-forming additive. To demonstrate the effect of nanocomposite morphology on the mechanical behavior of the prepared membranes, a set of control samples consisted of PSF membranes embedded with commercial CNTs at the same CNTs loading, were casted at the same conditions. The commercial CNTs had a lengths of 1 ?m to 10 ?m and outer diameters of 10 nm to 20 nm (corresponded aspect ratios ranging from 50 to 1000), with purity >95% and BET surface area of 156 m2/g. The effects of CNTs content and aspect ratio on morphological, water transport and mechanical properties of the prepared PSF-based porous membranes were investigated. The surface and cross-section morphologies of PSF/CNTs porous membranes were examined using scanning electron microscopy (SEM). The orientation, dispersion and distribution of CNTs within polymer membranes were evaluated for the membrane samples with different CNTs content and CNTs aspect ratio. The average membrane pore size was evaluated by using SEM image analysis software. Uniaxial tensile behavior of the membranes was characterized by means of a universal material testing machine under different testing conditions. Wet specimens were carefully cut from the casted membranes by using a razor blade. Elastic, plastic and failure behaviors of the membranes are analyzed with the impacts of CNTs content and aspect ratio. The macroscopic mechanical behaviors of the membranes are correlated with their strain induced microstructure evolution by using SEM. In this, pore shape evolution, pore and CNTs orientations, neighboring pore interaction, interface between the CNTs and PSF matrix and the failure behavior of the deformed porous membranes were analyzed. The macroscopic stress-strain responses of the membranes were correlated with the microstructure of the studied nanocomposites membranes to provide a better understanding of materials' processing-microstructure-properties relationship.qscienc

    The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial

    Get PDF
    \ua9 2023, The Author(s).BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system–penetrant, type II RAF inhibitor tovorafenib (420 mg m−2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485

    Imports and isotopes: a modern baseline study for interpreting Iron Age and Roman trade in fallow deer antlers

    Get PDF
    The European Fallow deer (Dama dama dama) became extinct in the British Isles and most of continental Europe at the time of the Last Glacial Maximum, with the species becoming restricted to an Anatolian refugium (Masseti et al. 2008). Human-mediated reintroductions resulted in fallow populations in Rhodes, Sicily, Mallorca, Iberia and other parts of western Europe (Sykes et al. 2013). Eventually, the species was brought to Britain by the Romans during the 1st century AD, with a breeding population being established at Fishbourne Roman Palace (Sykes et al. 2011). The human influence on the present-day distribution of the species makes it particularly interesting from a zooarchaeological perspective. This paper describes my MSc research, as part of the AHRC-funded project Dama International: Fallow Deer and European Society 6000 BC–AD 1600, looking at antlers from Iron Age and Roman sites in Britain for evidence of trade in body parts and whether this can be elucidated by a parallel stable isotope study of modern fallow antlers of known provenance

    Numerical simulation of coupeld heat transfer through a concrete hollow brick

    No full text
    The present study aims to investigate coupled heat transfer by natural convection and conduction through a concrete hollow brick. The governing equations for conservation of mass, momentum and energy are discretized by the finite volume approach and solved by the SIMPLE algorithm. The numerical simulations were conducted to investigate the effect of Rayleigh number (103≤ Ra ≤ 107) on the heat transfer and fluid flow within the structure

    Transconjuctival versus subciliary approach for zygomaticomaxillary complex fractures

    No full text

    Optical coherence tomography angiography reveals progressive worsening of retinal vascular geometry in diabetic retinopathy and improved geometry after panretinal photocoagulation.

    No full text
    PurposeTo quantify vessel tortuosity and fractal dimension of the superficial capillary plexus (SCP) of the macula in different stages of diabetic retinopathy (DR), and following panretinal photocoagulation (PRP) using optical coherence tomography angiography (OCTA).Methods75 eyes of 75 subjects were divided into five groups; healthy controls, diabetes with no clinical DR, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR) and patients who received PRP for PDR (PDR+PRP).For vessel tortuosity, SCP slabs from 3x3 mm macular OCTA scans were processed using imageJ (NIH, USA), where large perifoveal vessels were traced and their length was measured with tortuosity calculated as the ratio between the actual length and the straight Euclidean length. For fractal dimension, SCP slabs were processed and imported to Fractalyse (ThéMA, France), where box-counting analyses produced fractal dimension values.ResultsWe found a significant difference in vessel tortuosity and fractal dimension between the five groups (one-way ANOVA, p ConclusionsWe used macular OCTA scans to demonstrate significantly higher perifoveal large vessel tortuosity, and lower fractal dimension in NPDR and PDR compared to healthy controls. Vessel tortuosity shows more dramatic normalization than fractal dimension and could be explored as a sensitive marker for successful PRP
    • …
    corecore