12 research outputs found

    Quantum walks-based simple authenticated quantum cryptography protocols for secure wireless sensor networks

    Get PDF
    Wireless sensor networks play a crucial role in various applications, ranging from environmental monitoring to industrial automation that require high levels of security. With the development of quantum technologies, many security mechanisms maybe hacked due to the promising capabilities of quantum computation. To address this challenge, quantum protocols have emerged as a promising solution for enhancing the security of wireless sensor communications. One of the common types of quantum protocols is quantum key distribution (QKD) protocols, which are investigated to allow two participants with fully quantum capabilities to share a random secret key, while semi-quantum key distribution (SQKD) protocols are designed to perform the same task using fewer quantum resources to make quantum communications more realizable and practical. Quantum walk plays an essential role in quantum computing, which is a universal quantum computational paradigm. In this work, we utilize the advantages of quantum walk to design three authenticated quantum cryptographic protocols to establish secure channels for data transmission between sensor nodes: the first one is authenticated quantum key distribution (AQKD), the second one is authenticated semi quantum key distribution (ASQKD) with one of the two participants having limited quantum capabilities, and the last one is authenticated semi-quantum key distribution but both legitimate users possess limited quantum resources. The advantages of the proposed protocols are that the partners can exchange several different keys with the same exchanged qubits, and the presented protocols depend on a one-way quantum communication channel. In contrast, all previously designed SQKD protocols rely on two-way quantum communication. Security analyses prove that the presented protocols are secure against various well known attacks and highly efficient. The utilization of the presented protocols in wireless sensor communications opens up new avenues for secure and trustworthy data transmission, enabling the deployment of resilient wireless sensor networks in critical applications. This work also paves the way for future exploration of quantum-based security protocols and their integration into wireless sensor networks for enhanced data protection

    Securing Digital Images through Simple Permutation-Substitution Mechanism in Cloud-Based Smart City Environment

    Get PDF
    Data security plays a significant role in data transfer in cloud-based smart cities. Chaotic maps are commonly used in designing modern cryptographic applications, in which one-dimensional (1D) chaotic systems are widely used due to their simple design and low computational complexity. However, 1D chaotic maps suffer from different kinds of attacks because of their chaotic discontinuous ranges and small key-space. To own the benefits of 1D chaotic maps and avoid their drawbacks, the cascading of two integrated 1D chaotic systems has been utilized. In this paper, we report an image cryptosystem for data transfer in cloud-based smart cities using the cascading of Logistic-Chebyshev and Logistic-Sine maps. Logistic-Sine map has been utilized to permute the plain image, and Logistic-Chebyshev map has been used to substitute the permuted image, while the cascading of both integrated maps has been utilized in performing XOR procedure on the substituted image. The security analyses of the suggested approach prove that the encryption mechanism has good efficiency as well as lower encryption time compared with other related algorithms

    A New Chaotic Map with Dynamic Analysis and Encryption Application in Internet of Health Things

    Get PDF
    © 2013 IEEE. In this paper, we report an effective cryptosystem aimed at securing the transmission of medical images in an Internet of Healthcare Things (IoHT) environment. This contribution investigates the dynamics of a 2-D trigonometric map designed using some well-known maps: Logistic-sine-cosine maps. Stability analysis reveals that the map has an infinite number of solutions. Lyapunov exponent, bifurcation diagram, and phase portrait are used to demonstrate the complex dynamic of the map. The sequences of the map are utilized to construct a robust cryptosystem. First, three sets of key streams are generated from the newly designed trigonometric map and are used jointly with the image components (R, G, B) for hamming distance calculation. The output distance-vector, corresponding to each component, is then Bit-XORed with each of the key streams. The output is saved for further processing. The decomposed components are again Bit-XORed with key streams to produce an output, which is then fed into the conditional shift algorithm. The Mandelbrot Set is used as the input to the conditional shift algorithm so that the algorithm efficiently applies confusion operation (complete shuffling of pixels). The resultant shuffled vectors are then Bit-XORed (Diffusion) with the saved outputs from the early stage, and eventually, the image vectors are combined to produce the encrypted image. Performance analyses of the proposed cryptosystem indicate high security and can be effectively incorporated in an IoHT framework for secure medical image transmission

    A new multistable jerk system with Hopf bifurcations, its electronic circuit simulation and an application to image encryption

    No full text
    In this work, we announce a new 3-D jerk system and show that it is chaotic and dissipative with the calculation of the Lyapunov exponents of the system. By performing a detailed bifurcation analysis, we observe that the new jerk system exhibits Hopf bifurcations. It is also shown that the new jerk system exhibits multistability behaviour with two coexisting chaotic attractors. An electronic circuit simulation of the jerk system is built using Multisim. Finally, based on the benefits of our proposed chaotic jerk system, we design a new approach to image encryption as a cryptographic application of our chaotic jerk system. The simulation outcomes prove the efficiency of the proposed encryption scheme with high security

    Admission control and buffer management of wireless communication systems with mobile stations and integrated voice and data services

    No full text
    This study presents models for management of voice and data traffic and new algorithms, which use call admission control as well as buffer management to optimise the performance of single channel systems such as wireless local area networks in the presence of mobile stations. Unlike existing studies, the new approach queues incoming voice packets as well as data packets, and uses a new pre-emption algorithm in order to keep the response time of voice requests at certain levels while the blocking of data requests is minimised. A new performance metric is introduced to provide uncorrelated handling of integrated services. Queueing related issues such as overall queue capacity, individual capacities for voice and data requests, the probability of blocking, and effects of waiting time on overall quality of service are considered in detail. Analytical models are presented and the results obtained from the analytical models were validated using discrete event simulations
    corecore