69 research outputs found

    Bee Pollen: Current Status and Therapeutic Potential.

    Get PDF
    Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry

    Using chitosan nanoparticles and N-acetyl thiazolidine 4-carboxylic acid for olive trees efficiency raising, improving fruits properties and oil quality

    Get PDF
    Abstract Recently exposure of olive trees to many stresses particularly oil varieties led to decline in the olive yield. The target of the study is to improve vegetative growth and increase olive fruits quality as well as the fruit oil % and oil quality by applying chitosan nanoparticles (CHNPs) and N-acetyl thiazolidine 4-carboxylic acid (N-ATCA) under the conditions of Egypt. The experiment was carried out in the seasons of 2021 and 2022 on Arbosana olive trees 8 years old and 4×6 m apart the trees sprayed three times on 15th Sept., 1st Oct. and 15th Oct. with (CHNPs at 500, 1000 and 1500 ppm), (N-ATCA at 50, 100 and 150 ppm) and a combination between them and evaluate the vegetative growth of trees, fruit physiochemical characteristics, and oil properties during both study seasons. The application of CHNPs and N-ATCA and a combination of them led to increasing leaf area, total chlorophyll and proline content also increment fruit weight, flesh weight, oil color and oil % moreover improving the quality of produced oil. The improvement in growth, fruit quality, oil % and oil quality, were associated with increasing concentrations of CHNPs, N-ATCA and a combination of them especially (CHNPs at 1500 ppm + N-ATCA at 100 ppm and CHNPs at 1500 ppm + N-ATCA at 150 ppm). Spraying (CHNPs at 1500 ppm + N-ATCA at 150 ppm) is recommended to improve the tree growth, fruit quality, oil % and quality of Arbosana olive

    A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus

    Get PDF
    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection

    Abstract Location Updating Strategies in Moving Object Databases

    No full text
    com Recent advances in wireless, communication systems have led to important new applications of Moving object databases (MOD). Typical application examples of moving object databases (MOD) might include mobile computing, mobile E-Commerce, Traffic police, taxi dispatchers and weather reporting services. The mobile computing capabilities allow users to manage their work while they are moving. In order to manage such moving objects in database management systems (DBMS) an updating strategy for moving object is required. In the literature there are many location updating polices. The dead-reckoning policy is the most common updating strategy for moving object. This policy can be divided into two major classes, namely the plain dead-reckoning (pdr) and adaptive dead-reckoning (adr). In this paper the problem of maintaining the current location of moving object in databases and the required updating strategy for moving object will be investigated. An implementation of deviation updating strategy will be introduced. This implementation is based on the generation of spatial-temporal data for the moving objects (e.g. cars).Where the moving objects are moving through a network street. Finally a complete comparison of the predicted moving object path and the actual path is given

    Pruning Boosts Growth, Yield, and Fruit Quality of Old Valencia Orange Trees: A Field Study

    No full text
    Pruning is an essential practice that helps control branch growth, optimize fruit size, and enhance fruit tree productivity. This study focused on ‘Valencia’ orange trees, which had experienced a decline in productivity after being cultivated on reclaimed lands for several years. The aim was to explore the impact of pruning intensity on vegetation growth, fruit yield, productivity, and fruit quality in these orange trees. The study involved 35-year-old ‘Valencia’ orange trees, which were subjected to four different levels of pruning. The pruning treatments included: T1—no pruning (control group), T2—light pruning (removal of 25% of main branches), T3—moderate pruning (removal of 50% of main branches), and T4—heavy pruning (removal of 75% of main branches). Each season, these pruning measures were consistently carried out on 15 February. The results indicated that the severity of pruning directly influenced vegetative growth parameters, such as shoot length and leaf area. As the pruning intensity increased, so did the growth of the vegetation. However, the overall volume of the tree’s canopy decreased compared to the control group. These findings provide insights into the relationship between pruning practices and the growth and productivity of ‘Valencia’ orange trees. The highest fruit yields were observed when pruning was carried out at a severity level of 75%, followed by 50 and 25%. These pruning treatments had a positive impact on various aspects of fruit quality, including weight, size, firmness, juice content, TSS (°Brix), TSS/acid ratio, and vitamin C content. Additionally, pruning contributed to a greater fruit yield per tree and an overall increase in the yield percentage. In essence, the findings suggest that pruning performed at different severity levels in February effectively promotes vegetation growth and enhances the physical and chemical properties of ‘Valencia’ orange trees. Notably, it resulted in a nearly 20% rise in fruit yield compared to the control group

    Improvement of Fruit Quality and Phytochemical Components of Pomegranate by Spraying with B<sub>2</sub>O<sub>3</sub> and ZnO Nanoparticles

    No full text
    Pomegranate is one of the most important and widely distributed trees. Boron and zinc are important nutrients for plant growth and fruit quality. Nanotechnology has emerged as one of the most innovative scientific fields in agriculture. This study was conducted to describe the changes in the physiochemical characteristics (weight, diameter, length, firmness and color), as well as the phytochemicals attributes (total phenolics, total flavonoids, ascorbic acid, anthocyanin and antioxidant %) and minerals contents, of pomegranates fruits of the ‘Wonderful’ cultivar as a result of spraying pomegranate trees using nanomaterials (zinc oxide (ZnONPs) and boron oxide (B2O3NPs)). In three successive developmental stages (full bloom, 6 weeks after full bloom and one month before harvest time), the trees were sprayed with 0.25, 0.5 and 1 g/L ZnONPs, as well as 0.25, 0.5 and 1 g/L B2O3NPs during the 2021 and 2022 seasons. The application of ZnONPs and B2O3NPs influenced the qualitative characteristics of the fruits in the studied seasons. The highest marketable % was observed for the 0.50 and 1 g/L ZnONPs and 1 g/L B2O3NPs compared to the other treatments. Also, a positive effect was recorded for the ZnONPs and B2O3NPs on the fruits’ physical properties. All of the ZnONP and B2O3NP treatments resulted in increasing the total phenolic, flavonoid, anthocyanin and ascorbic acid contents and the antioxidant activity in the pomegranate juices. In conclusion, our results suggest that spraying pomegranate trees with ZnONPs and B2O3NPs improves the marketable fruit, enhances the fruit quality and increases the bioactive components and antioxidant activity

    Nano-enhanced growth and resilience strategies for Pomegranate cv. Wonderful: Unveiling the impact of zinc and boron nanoparticles on fruit quality and abiotic stress management

    No full text
    The pomegranate fruit is an extremely popular fruit that is grown in various regions around the world. Pomegranate cv. Wonderful confronts severe abiotic stress disorders, like fruit cracking and sunburn, which decrease fruit quality. Nanoparticles offer potential for improving nutrient usage efficiency and lowering undesirable environmental repercussions. During three consecutive stages of development, namely the peak flowering stage, six weeks after peak flowering, and one month prior to harvest, magnificent pomegranate trees were subjected to separate applications of zinc oxide nanoparticles (ZnONPs) and boron oxide nanoparticles (B2O3NPs) at concentrations of 0, 250, 500, and 1000 parts per million (ppm). These treatments were carried out in both the 2021 and 2022 growing seasons. Positive effects were observed at concentrations of 500 and 1000 ppm for ZnONPs and a concentration of 1000 ppm for B2O3NPs on the vegetative growth parameters such as shoot length, leaf area, leaves number per shoot, and canopy volume, besides, leaf chemical characteristics such as leaf chlorophyll concentration and leaf nutrient content such as of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), zinc (Zn), and boron (B). Spraying with 500 and 1000 ppm B2O3NPs reduces the percentage of fruit sunburn, cracking and increased fruiting percentage such as initial fruit set (%), fruit retention (%), total yield of fruits (kg/tree), and increasing yield (%), while fruit drop % was decreased in comparison to other treatments. In both seasons, T4 (22.37, 22.0 %) and T7 (18.74, 19.490 %) showed an increase in initial fruit set (%). Similarly, there was an increase in fruit retention (%) with T4 (33.08, 34.550 %) and T7 (29.13, 29.430 %) compared to the control. The highest yield increasing percentages were observed with T4 (98.88, 100.270 %) and T3 (66.65, 64.980 %) compared to the control. On the other hand, T4 (8.24, 8.04 %) had the lowest fruit cracking, followed by T7 (12.73, 9.9 %) in the 2021 and 2022 seasons. Similarly, the lowest percentage of sunburned fruit was observed with T4 (20.47, 20.4 %) and T4 (18.43, 16.77 %) in the two seasons compared to the control. In general, our findings indicate that the application of ZnONPs and B2O3NPs on fully bloomed wonderful pomegranate trees, six weeks after full bloom, and one month prior to harvest, resulted in enhanced growth and yield. Additionally, this treatment exhibited a reduction in abiotic stress-related issues, such as fruit cracking and sunburn

    The Effect of Different Processing Methods on the Behavior of Minerals Content in Food Products

    No full text
    The goal of the current study was to determine the mineral content of various fruit varieties (Na, K, Ca, P, Mg, Fe, Zn, and Cu), as well as the effects of various processing methods (such as canning, drying, stewing, syrup process, and concentration of juices). All tested fruits that were subjected to various processing were exposed to a degree of mineral losing varied from very little too obvious reduction. However, it still retains its nutritional value. All fig products have the greatest levels of most tested minerals than other processed fruit products, particularly P and Fe. Then coming by orange products supply higher quantities of Ca. While apricot products have a comparable value of other minerals with those found in fig and orange products. Among canned juices, guava had the highest contents of Ca, P, and Fe, while mango scored the first juice as Mg and Zn supplying. Canned apricot halves contain the best amounts of K, Ca, P and Mg than the same products of apple and peach. Among jam products, fig jam possesses increasing amounts of Na, Ca, P, Mg, and Fe than those found in other fruit jams. The concentration of fruit juices by vacuum-heating or dehydration of fruit produced higher mineral retentions than the fruit products that were processed by other techniques. The concentrated orange juice by vacuum-heating processing retained most of the minerals found in raw juice, also dried apricot sheet retained higher minerals than that retained in dehydrated whole apricot
    corecore