585 research outputs found

    Profile Characteristics of Cut Tooth Surfaces Developed by Rotating Instruments

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68018/2/10.1177_00220345570360062301.pd

    Cystic Fibrosis Foundation and European Cystic Fibrosis Society Survey of cystic fibrosis mental health care delivery

    Get PDF
    Background: Psychological morbidity in individuals with cystic fibrosis (CF) and their caregivers is common. The Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) Guidelines Committee on Mental Health sought the views of CF health care professionals concerning mental health care delivery. Methods: An online survey which focused on the current provision and barriers to mental health care was distributed to CF health care professionals. Results: Of the 1454 respondents, many did not have a colleague trained in mental health issues and 20% had no one on their team whose primary role was focused on assessing or treating these issues. Insufficient resources and a lack of competency were reported in relation to mental health referrals. Seventy-three percent of respondents had no experience with mental health screening. Of those who did, they utilized 48 different, validated scales. Conclusions: These data have informed the decision-making, dissemination and implementation strategies of the Mental Health Guidelines Committee sponsored by the CFF and ECFS

    Control Systems for Accelerators, Operational Tools

    Get PDF

    Looking for magnetic monopoles at LHC with diphoton events

    Get PDF
    Magnetic monopoles have been a subject of interest since Dirac established the relation between the existence of monopoles and charge quantization. The intense experimental search carried thus far has not met with success. The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to discover these rare particles we propose here other ways to detect them. We study the observability of monopoles and monopolium, a monopole-antimonopole bound state, at the Large Hadron Collider in the γγ\gamma \gamma channel for monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal machine to discover monopoles with masses below 1 TeV at present running energies and with 5 fb1^{-1} of integrated luminosity.Comment: This manuscript contains information appeared in Looking for magnetic monopoles at LHC, arXiv:1104.0218 [hep-ph] and Monopolium detection at the LHC.,arXiv:1107.3684 [hep-ph] by the same authors, rewritten for joint publication in The European Physica Journal Plus. 26 pages, 22 figure

    Lattice gauge theory with baryons at strong coupling

    Get PDF
    We study the effective Hamiltonian for strong-coupling lattice QCD in the case of non-zero baryon density. In leading order the effective Hamiltonian is a generalized antiferromagnet. For naive fermions, the symmetry is U(4N_f) and the spins belong to a representation that depends on the local baryon number. Next-nearest-neighbor (nnn) terms in the Hamiltonian break the symmetry to U(N_f) x U(N_f). We transform the quantum problem to a Euclidean sigma model which we analyze in a 1/N_c expansion. In the vacuum sector we recover spontaneous breaking of chiral symmetry for the nearest-neighbor and nnn theories. For non-zero baryon density we study the nearest-neighbor theory only, and show that the pattern of spontaneous symmetry breaking depends on the baryon density.Comment: 31 pages, 5 EPS figures. Corrected Eq. (6.1

    Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order

    Full text link
    An equation of motion for relativistic compact binaries is derived through the third post-Newtonian (3 PN) approximation of general relativity. The strong field point particle limit and multipole expansion of the stars are used to solve iteratively the harmonically relaxed Einstein equations. We take into account the Lorentz contraction on the multipole moments defined in our previous works. We then derive a 3 PN acceleration of the binary orbital motion of the two spherical compact stars based on a surface integral approach which is a direct consequence of local energy momentum conservation. Our resulting equation of motion admits a conserved energy (neglecting the 2.5 PN radiation reaction effect), is Lorentz invariant and is unambiguous: there exist no undetermined parameter reported in the previous works. We shall show that our 3 PN equation of motion agrees physically with the Blanchet and Faye 3 PN equation of motion if λ=1987/3080\lambda = - 1987/3080, where λ\lambda is the parameter which is undetermined within their framework. This value of λ\lambda is consistent with the result of Damour, Jaranowski, and Sch\"afer who first completed a 3 PN iteration of the ADM Hamiltonian in the ADMTT gauge using the dimensional regularization.Comment: 52 pages, no figure, Appendices B and D added. Phys. Rev. D in pres

    Hadronic EDMs, the Weinberg Operator, and Light Gluinos

    Full text link
    We re-examine questions concerning the contribution of the three-gluon Weinberg operator to the electric dipole moment of the neutron, and provide several QCD sum rule-based arguments that the result is smaller than - but nevertheless consistent with - estimates which invoke naive dimensional analysis. We also point out a regime of the MSSM parameter space with light gluinos for which this operator provides the dominant contribution to the neutron electric dipole moment due to enhancement via the dimension five color electric dipole moment of the gluino.Comment: 6 pages, RevTeX, 3 figures; v2: references added; v3: typos corrected, to appear in Phys. Rev.

    Gamma rays from colliding winds of massive stars

    Get PDF
    Colliding winds of massive binaries have long been considered as potential sites of non-thermal high-energy photon production. This is motivated by the detection of non-thermal spectra in the radio band, as well as by correlation studies of yet unidentified EGRET gamma-ray sources with source populations appearing in star formation regions. This work re-considers the basic radiative processes and its properties that lead to high energy photon production in long-period massive star systems. We show that Klein-Nishina effects as well as the anisotropic nature of the inverse Compton scattering, the dominating leptonic emission process, likely yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma ray instruments like GLAST-LAT. In addition to all relevant radiative losses, we include propagation (such as convection in the stellar wind) as well as photon absorption effects, which a priori can not be neglected. The calculations are applied to WR140 and WR147, and predictions for their detectability in the gamma-ray regime are provided. Physically similar specimen of their kind like WR146, WR137, WR138, WR112 and WR125 may be regarded as candidate sources at GeV energies for near-future gamma-ray experiments. Finally, we discuss several aspects relevant for eventually identifying this source class as a gamma-ray emitting population. Thereby we utilize our findings on the expected radiative behavior of typical colliding wind binaries in the gamma-ray regime as well as its expected spatial distribution on the gamma-ray sky

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure
    corecore