7,500 research outputs found

    Infrared upconversion for astronomical applications

    Get PDF
    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given

    Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications

    Get PDF
    A discussion and an evaluation of the degradation in sensitivity is given for a heterodyne spectrometer employing a HgCdTe photodiode mixer and tunable diode lasers. The minimum detectable source brightness is considered as a function of the mixer parameters, transmission coefficient of the beam splitter, and local oscillator emission powers. The degradation in the minimum detectable line source brightness which results from the bandwidth being a function of the line width is evaluated and plotted as a function of the wavelength and bandwidth for various temperature to mass ratios. It is shown that the minimum achievable degradation in the sensitivity of a practical astronomical heterodyne spectrometer is approximately 30. Estimates of signal-to-noise ratios with which infrared line emission from astronomical sources of interest may be detected are given

    A Mechanism for Securing IoT-enabled Applications at the Fog Layer

    Get PDF
    The Internet of Things (IoT) is an emerging paradigm branded by heterogeneous technologies composed of smart ubiquitous objects that are seamlessly connected to the Internet. These objects are deployed as Low power and Lossy Networks (LLN) to provide innovative services in various application domains, such as smart cities, smart health, smart communities. The LLN is a form of a network where the interconnected devices are highly resource-constrained (i.e., power, memory, and processing) and characterized by high loss rates, low data rates and instability in the communication links. Additionally, IoT devices produce a massive amount of confidential and security-sensitive data. Various cryptographic-based techniques exist that can effectively cope with security attacks, but are not suitable for IoT as they incur high consumption of resources (i.e., memory, storage and processing). One way to address this problem is by offloading the additional security-related operations to a more resourceful entity such as a fog-based node. Generally, fog computing enables security and analysis of latency-sensitive data directly at the network’s edge. This paper proposes a novel Fog Security Service (FSS) to provide end-to-end security at fog layer for IoT devices, using two well-established cryptographic schemes, identity-based encryption and identity-based signature. The FSS provides security services, such as authentication, confidentiality, and non-repudiation. The proposed architecture is implemented and evaluated in OPNET simulator using a single network topology with different traffic loads. The FSS performed better when compared with the APaaS and the legacy method

    Stratospheric sounding by infrared heterodyne spectroscopy

    Get PDF
    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given

    Analytical Investigation of Mobile NFC Adaption with SWOT-AHP Approach: A Case of Italian Telecom

    Get PDF
    The purpose of this study is to appraise the critical factors in near field communication (NFC) adoption process and to utilize findings in order to support launching NFC implementations in Italy, by means of applying a combination of SWOT and AHP approaches. Hence, a set of twenty SWOT factors is identified qualitatively through extended interviews with telecommunication experts as well as exploratory studies on case which are supported by quantitative investigation through pair-wise comparisons matrices as an application of AHP approach. However, this combined methodology enables us to describe NFC adoption process, providing guidance to clarify the critical factors during adoption process. As the first application of joint SWOT and AHP approaches in telecommunication networks, managerial perceptions are promising either for policy makers concerning NFC or further academic researches on NFC application and full scale deployment in market

    Design and implementation of proposed 320 bit RC6-cascaded encryption/decryption cores on altera FPGA

    Get PDF
    This paper attempts to build up a simple, strong and secure cryptographic algorithm. The result of such an attempt is “RC6-Cascade” which is 320-bits RC6 like block cipher. The key can be any length up to 256 bytes. It is a secret-key block cipher with precise characteristics of RC6 algorithm using another overall structure design. In RC6-Cascade, cascading of F-functions will be used instead of rounds. Moreover, the paper investigates a hardware design to efficiently implement the proposed RC6-Cascade block cipher core on field programmable gate array (FPGA). An efficient compact iterative architecture will be designed for the F-function of the above algorithm. The goal is to design a more secure algorithm and present a very fast encryption core for low cost and small size applications

    Stretching a Surface Having a Layer of Porous Medium in a Viscous Fluid

    Get PDF
    The present analysis deals with the steady, incompressible flow of a viscous fluid over a stretching sheet having a layer of porous medium of uniform thickness. The two-dimensional flow equations are derived in a Cartesian coordinate system. The semi-infinite region filled with a viscous fluid is divided into two regions namely, a clear fluid region and a region having a uniform pores. Darcy\u27s law has been used for the flow of fluid in the porous medium region. An exact similar solution of the problem is obtained. The obtained solution is constrained by a relation between the porosity parameter and the parameter representing the viscosity ratios between the two regions. Our interest lies in determining the influence of porosity parameter, viscosities ratio parameter and thickness of the porous layer on the fluid velocity and the skin friction coefficient. The results for the Crane\u27s problem in a complete clear and a complete porous region are retrieved as special cases of the present solution

    Costs analysis of a population level rabies control programme in Tamil Nadu, India

    Get PDF
    The study aimed to determine costs to the state government of implementing different interventions for controlling rabies among the entire human and animal populations of Tamil Nadu. This built upon an earlier assessment of Tamil Nadu’s efforts to control rabies. Anti-rabies vaccines were made available at all health facilities. Costs were estimated for five different combinations of animal and human interventions using an activity-based costing approach from the provider perspective. Disease and population data were sourced from the state surveillance data, human census and livestock census. Program costs were extrapolated from official documents. All capital costs were depreciated to estimate annualized costs. All costs were inflated to 2012 Rupees. Sensitivity analysis was conducted across all major cost centres to assess their relative impact on program costs. It was found that the annual costs of providing Anti-rabies vaccine alone and in combination with Immunoglobulins was \$0.7 million (Rs 36 million) and \$2.2 million (Rs 119 million), respectively. For animal sector interventions, the annualised costs of rolling out surgical sterilisation-immunization, injectable immunization and oral immunizations were estimated to be \$ 44 million (Rs 2,350 million), \$23 million (Rs 1,230 million) and \$ 11 million (Rs 590 million), respectively. Dog bite incidence, health systems coverage and cost of rabies biologicals were found to be important drivers of costs for human interventions. For the animal sector interventions, the size of dog catching team, dog population and vaccine costs were found to be driving the costs. Rabies control in Tamil Nadu seems a costly proposition the way it is currently structured. Policy makers in Tamil Nadu and other similar settings should consider the long-term financial sustainability before embarking upon a state or nation-wide rabies control programme
    corecore