72 research outputs found

    Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

    Full text link
    We report strong heavy hole-light mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k\cdotp theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.Comment: 4 pages, 2 figure

    Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots

    Full text link
    In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum dots in longitudinal magnetic fields applied along the growth axis we observe in addition to the expected bright states also nominally dark transitions for both charged and neutral excitons. We uncover a strongly non-monotonous, sign changing field dependence of the bright neutral exciton splitting resulting from the interplay between exchange and Zeeman effects. Our theory shows quantitatively that these surprising experimental results are due to magnetic-field-induced \pm 3/2 heavy-hole mixing, an inherent property of systems with C_3v point-group symmetry.Comment: 5 pages, 3 figure

    Optical properties of an ensemble of G-centers in silicon

    Full text link
    We addressed the carrier dynamics in so-called G-centers in silicon (consisting of substitutional-interstitial carbon pairs interacting with interstitial silicons) obtained via ion implantation into a silicon-on-insulator wafer. For this point defect in silicon emitting in the telecommunication wavelength range, we unravel the recombination dynamics by time-resolved photoluminescence spectroscopy. More specifically, we performed detailed photoluminescence experiments as a function of excitation energy, incident power, irradiation fluence and temperature in order to study the impact of radiative and non-radiative recombination channels on the spectrum, yield and lifetime of G-centers. The sharp line emitting at 969 meV (\sim1280 nm) and the broad asymmetric sideband developing at lower energy share the same recombination dynamics as shown by time-resolved experiments performed selectively on each spectral component. This feature accounts for the common origin of the two emission bands which are unambiguously attributed to the zero-phonon line and to the corresponding phonon sideband. In the framework of the Huang-Rhys theory with non-perturbative calculations, we reach an estimation of 1.6±\pm0.1 \angstrom for the spatial extension of the electronic wave function in the G-center. The radiative recombination time measured at low temperature lies in the 6 ns-range. The estimation of both radiative and non-radiative recombination rates as a function of temperature further demonstrate a constant radiative lifetime. Finally, although G-centers are shallow levels in silicon, we find a value of the Debye-Waller factor comparable to deep levels in wide-bandgap materials. Our results point out the potential of G-centers as a solid-state light source to be integrated into opto-electronic devices within a common silicon platform

    Engineering spin-orbit coupling for photons and polaritons in microstructures

    Get PDF
    One of the most fundamental properties of electromagnetism and special relativity is the coupling between the spin of an electron and its orbital motion. This is at the origin of the fine structure in atoms, the spin Hall effect in semiconductors, and underlies many intriguing properties of topological insulators, in particular their chiral edge states. Configurations where neutral particles experience an effective spin-orbit coupling have been recently proposed and realized using ultracold atoms and photons. Here we use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarisation dependent confinement and tunnelling of photons between micropillars arranged in the form of a hexagonal photonic molecule. Dramatic consequences of the spin-orbit coupling are experimentally observed in these structures in the wavefunction of polariton condensates, whose helical shape is directly visible in the spatially resolved polarisation patterns of the emitted light. The strong optical nonlinearity of polariton systems suggests exciting perspectives for using quantum fluids of polaritons11 for quantum simulation of the interplay between interactions and spin-orbit coupling.Comment: main text: pages 1-11 (4 figures); supplementary material: pages 12-28 (9 figures

    Single-dot Spectroscopy of GaAs Quantum Dots Fabricated by Filling of Self-assembled Nanoholes

    Get PDF
    We study the optical emission of single GaAs quantum dots (QDs). The QDs are fabricated by filling of nanoholes in AlGaAs and AlAs which are generated in a self-assembled fashion by local droplet etching with Al droplets. Using suitable process parameters, we create either uniform QDs in partially filled deep holes or QDs with very broad size distribution in completely filled shallow holes. Micro photoluminescence measurements of single QDs of both types establish sharp excitonic peaks. We measure a fine-structure splitting in the range of 22–40μeV and no dependence on QD size. Furthermore, we find a decrease in exciton–biexciton splitting with increasing QD size

    Young’s Type Interference for Probing the Mode Symmetry in Photonic Structures

    Get PDF
    A revisited realization of the Young’s double slit experiment is introduced to directly probe the photonic mode symmetry by photoluminescence experiments. We experimentally measure the far field angular emission pattern of quantum dots embedded in photonic molecules. The experimental data well agree with predictions from Young’s interference and numerical simulations. Moreover, the vectorial nature of photonic eigenmodes results in a rather complicated parity property for different polarizations, a feature which has no counterpart in quantum mechanics

    Single artificial atoms in silicon emitting at telecom wavelengths

    Full text link
    Given its unrivaled potential of integration and scalability, silicon is likely to become a key platform for large-scale quantum technologies. Individual electron-encoded artificial atoms either formed by impurities or quantum dots have emerged as a promising solution for silicon-based integrated quantum circuits. However, single qubits featuring an optical interface needed for large-distance exchange of information have not yet been isolated in such a prevailing semiconductor. Here we show the isolation of single optically-active point defects in a commercial silicon-on-insulator wafer implanted with carbon atoms. These artificial atoms exhibit a bright, linearly polarized single-photon emission at telecom wavelengths suitable for long-distance propagation in optical fibers. Our results demonstrate that despite its small bandgap (~ 1.1 eV) a priori unfavorable towards such observation, silicon can accommodate point defects optically isolable at single scale, like in wide-bandgap semiconductors. This work opens numerous perspectives for silicon-based quantum technologies, from integrated quantum photonics to quantum communications and metrology
    corecore