129 research outputs found

    Strangeness Enhancement Scenarios: Fireball or Independent Strings?

    Full text link
    Due to the long-standing discrepancy between NA35 and NA36 data on Λ\Lambda production, two drastically different scenarios of strangeness enhancement are still possible. Independent string models, such as the dual parton model, lead to results close to the NA36 data. On the contrary, the NA35 results can only be described by introducing full final state rescattering of the produced particles. The corresponding predictions for central PbPb-PbPb collisions at CERN energies differ by a factor 3 to 4. Preliminary data on the net proton (pp-pˉ\bar{p}) rapidity distribution in PbPb-PbPb collisions favor the independent string scenario.Comment: 12 pages, Plain Tex, no figure

    Strangeness Enhancement in p+Ap+A and S+AS+A Interactions at SPS Energies

    Full text link
    The systematics of strangeness enhancement is calculated using the HIJING and VENUS models and compared to recent data on pp\,pp\,, pA\,pA\, and AA\,AA\, collisions at CERN/SPS energies (200AGeV200A\,\, GeV\,). The HIJING model is used to perform a {\em linear} extrapolation from pppp to AAAA. VENUS is used to estimate the effects of final state cascading and possible non-conventional production mechanisms. This comparison shows that the large enhancement of strangeness observed in S+AuS+Au collisions, interpreted previously as possible evidence for quark-gluon plasma formation, has its origins in non-equilibrium dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced back to the change in the production dynamics %from pppp to minimum bias pSpS and central SSSS collisions. A factor of two enhancement of Λ0\Lambda^{0} at mid-rapidity is indicated by recent pSpS data, where on the average {\em one} projectile nucleon interacts with only {\em two} target nucleons. There appears to be another factor of two enhancement in the light ion reaction SSSS relative to pSpS, when on the average only two projectile nucleons interact with two target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil

    Correlations and Fluctuations in High-Energy Nuclear Collisions

    Get PDF
    Nucleon correlations in the target and projectile nuclei are shown to reduce significantly the fluctuations in multiple nucleon-nucleon collisions, total multiplicity and transverse energy in relativistic heavy-ion collisions, in particular for heavy projectile and target. The interplay between cross-section fluctuations, from color transparency and opacity, and nuclear correlations is calculated and found to be able to account for large fluctuations in transverse energy spectra. Numerical implementation of correlations and cross-section fluctuations in Monte-Carlo codes is discussed.Comment: 30 pages, in Revtex, plus 4 figures. Figures and preprint can be obtained by mailing address to: [email protected]

    Stability of strange quark matter: MIT bag versus Color Dielectric Model

    Get PDF
    We discuss the properties of strange matter, in particular the minimum of the energy per baryon number as a function of the strangeness fraction. We utilize both the MIT bag model and the Color Dielectric Model and compare the energy per baryon with the masses of hyperons having the corresponding strangeness fraction, which are coherently calculated within both models. We also take into account the perturbative exchange of gluons. The results obtained in the two approaches allow to discuss the stability of strangelets. While the MIT bag model and the double minimum version of the Color Dielectric Model allow the existence of strangelets, the single minimum version of the Color Dielectric Model excludes this possibility.Comment: 26 pages, 9 figure

    Observing Quark-Gluon Plasma with Strange Hadrons

    Full text link
    We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160-200A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table

    Transition from a quark-gluon plasma in the presence of a sharp front

    Full text link
    The effect of a sharp front separating the quark-gluon plasma phase from the hadronic phase is investigated. Energy-momentum conservation and baryon number conservation constrain the possible temperature jump across the front. If one assumes that the temperature in the hadronic phase is TT\simeq 200 MeV , as has been suggested by numerous results from relativistic ion collisions, one can determine the corresponding temperature in the quark phase with the help of continuity equations across the front. The calculations reveal that the quark phase must be in a strongly supercooled state. The stability of this solution with respect to minor modifications is investigated. In particular the effect of an admixture of hadronic matter in the quark phase (e.g. in the form of bubbles) is considered in detail. In the absence of admixture the transition proceeds via a detonation transition and is accompanied by a substantial super-cooling of the quark-gluon plasma phase. The detonation is accompanied by less supercooling if a small fraction of bubbles is allowed. By increasing the fraction of bubbles the supercooling becomes weaker and eventually the transition proceeds via a smoother deflagration wave.Comment: 10 pages, manuscript in TeX, 9 figures available as Postscript files, CERN-TH 6923/9

    UNDERSTANDING THE SCALAR MESON qqˉq\bar q NONET

    Full text link
    It is shown that one can fit the available data on the a0(980), f0(980), f0(1300) and K*0(1430) mesons as a distorted 0++ qq bar nonet using very few (5-6) parameters and an improved version of the unitarized quark model. This includes all light two-pseudoscalar thresholds, constraints from Adler zeroes, flavour symmetric couplings, unitarity and physically acceptable analyticity. The parameters include a bare uu bar or dd bar mass, an over-all coupling constant, a cutoff and a strange quark mass of 100 MeV, which is in accord with expectations from the quark model. It is found that in particular for the a0(980) and f0(980) the KK bar component in the wave function is large, i.e., for a large fraction of the time the qq bar state is transformed into a virtual KK bar pair. This KK bar component, together with a similar component of eta' pi for the a0(980) , and eta eta, eta eta' and eta' eta' components for the f0(980), causes the substantial shift to a lower mass than what is naively expected from the qq bar component alone. Mass, width and mixing parameters, including sheet and pole positions, of the four resonances are given, with a detailed pedagogical discussion of their meaning.Comment: 35 pages in plain latex (ZPC in press), 10 figures obtainable from the author ([email protected]) with regular mail or as a large PS fil

    Towards resolution of the scalar meson nonet enigma

    Get PDF
    By the application of a linear mass spectrum to a composite system of both the pseudoscalar and scalar meson nonets, we find three mass relations for the masses of the scalar states which suggest the qqˉq\bar{q} assignment for the scalar meson nonet: a0(1320),a_0(1320), K0(1430),K_0^\ast (1430), f0(1500),f_0(1500), f0(980).f_0'(980).Comment: 16 pages, LaTe

    QCD Glueball Regge Trajectories and the Pomeron

    Get PDF
    We report a glueball Regge trajectory emerging from diagonalizing a confining Coulomb gauge Hamiltonian for constituent gluons. Using a BCS vacuum ansatz and gap equation, the dressed gluons acquire a mass, of order 800 MeVMeV, providing the quasiparticle degrees of freedom for a TDA glueball formulation. The TDA eigenstates for two constituent gluons have orbital, LL, excitations with a characteristic energy of 400 MeVMeV revealing a clear Regge trajectory for J=L+S\vec{J} = \vec{L} + \vec{S}, where SS is the total (sum) gluon spin. Significantly, the S=2S = 2 glueball spectrum coincides with the Pomeron given by αP(t)=1.08+0.25t\alpha_P(t)=1.08+0.25 t . Finally, we also ascertain that lattice data supports our result, yielding an average intercept of 1.1 in good agreement with the Pomeron.Comment: 10 pages, 4 ps figure

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR
    corecore