2,196 research outputs found

    Baryonic acoustic oscillations simulations for the Large Synoptic Survey Telescope (LSST)

    Full text link
    The baryonic acoustic oscillations are features in the spatial distribution of the galaxies which, if observed at different epochs, probe the nature of the dark energy. In order to be able to measure the parameters of the dark energy equation of state to high precision, a huge sample of galaxies has to be used. The Large Synoptic Survey Telescope will survey the optical sky with 6 filters from 300nm and 1100nm, such that a catalog of galaxies with photometric redshifts will be available for dark energy studies. In this article, we will give a rough estimate of the impact of the photometric redshift uncertainties on the computation of the dark energy parameter through the reconstruction of the BAO scale from a simulated photometric catalog.Comment: 4 pages, 2 figures, 10th Rencontres de Blois proceedin

    Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    Get PDF
    The stellar population in the Galactic halo is characterised by a large fraction of CEMP stars. Most CEMP stars are enriched in ss-elements (CEMP-ss stars), and some of these are also enriched in rr-elements (CEMP-s/rs/r stars). One formation scenario proposed for CEMP stars invokes wind mass transfer in the past from a TP-AGB primary star to a less massive companion star which is presently observed. We generate low-metallicity populations of binary stars to reproduce the observed CEMP-star fraction. In addition, we aim to constrain our wind mass-transfer model and investigate under which conditions our synthetic populations reproduce observed abundance distributions. We compare the CEMP fractions and the abundance distributions determined from our synthetic populations with observations. Several physical parameters of the binary stellar population of the halo are uncertain, e.g. the initial mass function, the mass-ratio and orbital-period distributions, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population. The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The results of our comparison between the modelled and observed abundance distributions are different for CEMP-s/rs/r stars and for CEMP-ss stars. For the latter, our simulations qualitatively reproduce the observed distributions of C, Na, Sr, Ba, Eu, and Pb. Contrarily, for CEMP-s/rs/r stars our model cannot reproduce the large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result is consistent with previous studies, and suggests that CEMP-s/rs/r stars experienced a different nucleosynthesis history to CEMP-ss stars.Comment: 17 pages, 11 figures, accepted for publication on Astronomy and Astrophysic

    Statistical characterization of the forces on spheres in an upflow of air

    Get PDF
    The dynamics of a sphere fluidized in a nearly-levitating upflow of air were previously found to be identical to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equation [Ojha {\it et al.}, Nature {\bf 427}, 521 (2004)]. The random forcing, the drag, and the trapping potential represent different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential between two spheres in an upflow of air.Comment: 7 pages, experimen

    I tumori del rene

    Get PDF
    non presente (capitolo di libro

    An Algorithmic Test for Diagonalizability of Finite-Dimensional PT-Invariant Systems

    Get PDF
    A non-Hermitean operator does not necessarily have a complete set of eigenstates, contrary to a Hermitean one. An algorithm is presented which allows one to decide whether the eigenstates of a given PT-invariant operator on a finite-dimensional space are complete or not. In other words, the algorithm checks whether a given PT-symmetric matrix is diagonalizable. The procedure neither requires to calculate any single eigenvalue nor any numerical approximation.Comment: 13 pages, 1 figur

    A New Simulation Metric to Determine Safe Environments and Controllers for Systems with Unknown Dynamics

    Full text link
    We consider the problem of extracting safe environments and controllers for reach-avoid objectives for systems with known state and control spaces, but unknown dynamics. In a given environment, a common approach is to synthesize a controller from an abstraction or a model of the system (potentially learned from data). However, in many situations, the relationship between the dynamics of the model and the \textit{actual system} is not known; and hence it is difficult to provide safety guarantees for the system. In such cases, the Standard Simulation Metric (SSM), defined as the worst-case norm distance between the model and the system output trajectories, can be used to modify a reach-avoid specification for the system into a more stringent specification for the abstraction. Nevertheless, the obtained distance, and hence the modified specification, can be quite conservative. This limits the set of environments for which a safe controller can be obtained. We propose SPEC, a specification-centric simulation metric, which overcomes these limitations by computing the distance using only the trajectories that violate the specification for the system. We show that modifying a reach-avoid specification with SPEC allows us to synthesize a safe controller for a larger set of environments compared to SSM. We also propose a probabilistic method to compute SPEC for a general class of systems. Case studies using simulators for quadrotors and autonomous cars illustrate the advantages of the proposed metric for determining safe environment sets and controllers.Comment: 22nd ACM International Conference on Hybrid Systems: Computation and Control (2019

    Mass spectrometric evidence for collisionally induced removal of H2 from monoanions of 10B nido-carborane derivatives investigated by electrospray ionization quadrupole linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Some newly synthesized 10B nido-carborane derivatives, i.e., 7,8-dicarba-nido-undecaborane monoanions ([7-Me-8-R-C2B9H10]-K+, R = H, butyl, hexyl, octyl and decyl), have been fully characterised and examined by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry with liquid chromatographic separation (LC/ESI-FTICR-MS). These boron-containing compounds exhibit abundant molecular ions ([M]−) at m/z 140.22631 [CB9H14]−, m/z 196.28883 [CB9H22]−, m/z 224.32032 [CB9H26]−, m/z 252.35133 [CB9H30]− and m/z 280.38354 [CB9H34]− at the normal tube lens voltage setting of −90 V, which was an instrumental parameter value selected in the tuning operation. Additional [M–nH2]− (n = 1−4) ions were observed in the mass spectra when higher tube lens voltages were applied, i.e., −140 V. High-resolution FTICR-MS data revealed the accurate masses of fragment ions, bearing either an even or an odd number of electrons. Collision-induced dissociation of the [M–nH2]− ions (n = 0–4) in the quadrupole linear ion trap (LTQ) analyzer confirmed the loss of hydrogen molecules from the molecular ions. It is suggested that the loss of H2 molecules from the alkyl chain is a consequence of the stabilization effect of the nido-carborane charged polyhedral skeleton

    Kaemika app, Integrating protocols and chemical simulation

    Full text link
    Kaemika is an app available on the four major app stores. It provides deterministic and stochastic simulation, supporting natural chemical notation enhanced with recursive and conditional generation of chemical reaction networks. It has a liquid-handling protocol sublanguage compiled to a virtual digital microfluidic device. Chemical and microfluidic simulations can be interleaved for full experimental-cycle modeling. A novel and unambiguous representation of directed multigraphs is used to lay out chemical reaction networks in graphical form
    • …
    corecore