A non-Hermitean operator does not necessarily have a complete set of
eigenstates, contrary to a Hermitean one. An algorithm is presented which
allows one to decide whether the eigenstates of a given PT-invariant operator
on a finite-dimensional space are complete or not. In other words, the
algorithm checks whether a given PT-symmetric matrix is diagonalizable. The
procedure neither requires to calculate any single eigenvalue nor any numerical
approximation.Comment: 13 pages, 1 figur