13 research outputs found

    Streptomyces spp. From Ethiopia Producing Antimicrobial Compounds: Characterization via Bioassays, Genome Analyses, and Mass Spectrometry

    Get PDF
    A total of 416 actinomycete cultures were isolated from various unique environments in Ethiopia and tested for bioactivity. Six isolates with pronounced antimicrobial activity were chosen for taxonomic identification and further investigation. Morphological and cultural properties of the isolates were found to be consistent with those of the genus Streptomyces, which was further confirmed by phylogenetic analysis based on 16S rRNA gene sequences. One of the isolates, designated Streptomyces sp. Go-475, which displayed potent activity against both pathogenic yeasts and Gram-positive bacteria, was chosen for further investigation. Metabolite profiles and bioactivity of Go-475 incubated on wheat bran-based solid and soya flour-based liquid media were compared using high-resolution LC-MS. This allowed identification of several known compounds, and suggested the ability of Go-475 to produce new secondary metabolites. Major anti-bacterial compounds were purified from liquid cultures of Go-475, and their structures elucidated by NMR and HRMS as 8-O-methyltetrangomycin and 8-O-methyltetrangulol. In addition, many potentially novel metabolites were detected, the majority of which were produced in solid media-based fermentation. The genome sequence of Streptomyces sp. Go-475 was obtained using a hybrid assembly approach of high quality Illumina short read and low quality Oxford Nanopore long read data. The complete linear chromosome of 8,570,609 bp, featuring a G+C content of 71.96%, contains 7,571 predicted coding sequences, 83 t(m)RNA genes, and six rrn operons. Analysis of the genome for secondary metabolite biosynthesis gene clusters further confirmed potential of this isolate to synthesize chemically diverse natural products, and allowed to connect certain clusters with experimentally confirmed molecules

    Data_Sheet_1_Streptomyces spp. From Ethiopia Producing Antimicrobial Compounds: Characterization via Bioassays, Genome Analyses, and Mass Spectrometry.docx

    No full text
    <p>A total of 416 actinomycete cultures were isolated from various unique environments in Ethiopia and tested for bioactivity. Six isolates with pronounced antimicrobial activity were chosen for taxonomic identification and further investigation. Morphological and cultural properties of the isolates were found to be consistent with those of the genus Streptomyces, which was further confirmed by phylogenetic analysis based on 16S rRNA gene sequences. One of the isolates, designated Streptomyces sp. Go-475, which displayed potent activity against both pathogenic yeasts and Gram-positive bacteria, was chosen for further investigation. Metabolite profiles and bioactivity of Go-475 incubated on wheat bran-based solid and soya flour-based liquid media were compared using high-resolution LC-MS. This allowed identification of several known compounds, and suggested the ability of Go-475 to produce new secondary metabolites. Major anti-bacterial compounds were purified from liquid cultures of Go-475, and their structures elucidated by NMR and HRMS as 8-O-methyltetrangomycin and 8-O-methyltetrangulol. In addition, many potentially novel metabolites were detected, the majority of which were produced in solid media-based fermentation. The genome sequence of Streptomyces sp. Go-475 was obtained using a hybrid assembly approach of high quality Illumina short read and low quality Oxford Nanopore long read data. The complete linear chromosome of 8,570,609 bp, featuring a G+C content of 71.96%, contains 7,571 predicted coding sequences, 83 t(m)RNA genes, and six rrn operons. Analysis of the genome for secondary metabolite biosynthesis gene clusters further confirmed potential of this isolate to synthesize chemically diverse natural products, and allowed to connect certain clusters with experimentally confirmed molecules.</p

    Fighting the force: Potential of homeobox genes for tumor microenvironment regulation

    No full text
    Tumor cells exist in a constantly evolving stromal microenvironment composed of vasculature, immune cells and cancer-associated fibroblasts, all residing within a dynamic extracellular matrix. In this review, we examine the biochemical and biophysical interactions between these various stromal cells and their matrix microenvironment. While the stroma can alter tumor progression via multiple mechanisms, we emphasize the role of homeobox genes in detecting and modulating the mechanical changes in the microenvironment during tumor progression

    HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype

    No full text
    Breast cancer 1, early onset (BRCA1) expression is often reduced in sporadic breast tumors, even in the absence of BRCA1 genetic modifications, but the molecular basis for this is unknown. In this study, we identified homeobox A9 (HOXA9) as a gene frequently downregulated in human breast cancers and tumor cell lines and noted that reduced HOXA9 transcript levels associated with tumor aggression, metastasis, and patient mortality. Experiments revealed that loss of HOXA9 promoted mammary epithelial cell growth and survival and perturbed tissue morphogenesis. Restoring HOXA9 expression repressed growth and survival and inhibited the malignant phenotype of breast cancer cells in culture and in a xenograft mouse model. Molecular studies showed that HOXA9 restricted breast tumor behavior by directly modulating the expression of BRCA1. Indeed, ectopic expression of wild-type BRCA1 phenocopied the tumor suppressor function of HOXA9, and reducing BRCA1 levels or function inhibited the antitumor activity of HOXA9. Consistently, HOXA9 expression correlated with BRCA1 in clinical specimens and with tumor aggression in patients lacking estrogen receptor/progesterone receptor expression in their breast tissue. These findings indicate that HOXA9 restricts breast tumor aggression by modulating expression of the tumor suppressor gene BRCA1, which we believe provides an explanation for the loss of BRCA1 expression in sporadic breast tumors in the absence of BRCA1 genetic modifications

    Streptomyces spp. From Ethiopia Producing Antimicrobial Compounds: Characterization via Bioassays, Genome Analyses, and Mass Spectrometry

    No full text
    A total of 416 actinomycete cultures were isolated from various unique environments in Ethiopia and tested for bioactivity. Six isolates with pronounced antimicrobial activity were chosen for taxonomic identification and further investigation. Morphological and cultural properties of the isolates were found to be consistent with those of the genus Streptomyces, which was further confirmed by phylogenetic analysis based on 16S rRNA gene sequences. One of the isolates, designated Streptomyces sp. Go-475, which displayed potent activity against both pathogenic yeasts and Gram-positive bacteria, was chosen for further investigation. Metabolite profiles and bioactivity of Go-475 incubated on wheat bran-based solid and soya flour-based liquid media were compared using high-resolution LC-MS. This allowed identification of several known compounds, and suggested the ability of Go-475 to produce new secondary metabolites. Major anti-bacterial compounds were purified from liquid cultures of Go-475, and their structures elucidated by NMR and HRMS as 8-O-methyltetrangomycin and 8-O-methyltetrangulol. In addition, many potentially novel metabolites were detected, the majority of which were produced in solid media-based fermentation. The genome sequence of Streptomyces sp. Go-475 was obtained using a hybrid assembly approach of high quality Illumina short read and low quality Oxford Nanopore long read data. The complete linear chromosome of 8,570,609 bp, featuring a G+C content of 71.96%, contains 7,571 predicted coding sequences, 83 t(m)RNA genes, and six rrn operons. Analysis of the genome for secondary metabolite biosynthesis gene clusters further confirmed potential of this isolate to synthesize chemically diverse natural products, and allowed to connect certain clusters with experimentally confirmed molecules.© 2018 Kibret, Guerrero-Garzón, Urban, Zehl, Wronski, Rückert, Busche, Kalinowski, Rollinger, Abate and Zotche
    corecore