6 research outputs found

    Exome Sequencing of a Primary Ovarian Insufficiency Cohort Reveals Common Molecular Etiologies for a Spectrum of Disease

    No full text
    Context: Primary ovarian insufficiency (POI) encompasses a spectrum of premature menopause, including both primary and secondary amenorrhea. For 75% to 90% of individuals with hyper-gonadotropic hypogonadism presenting as POI, the molecular etiology is unknown. Common etiologies include chromosomal abnormalities, environmental factors, and congenital disorders affecting ovarian development and function, as well as syndromic and nonsyndromic single gene disorders suggesting POI represents a complex trait.Objective: To characterize the contribution of known disease genes to POI and identify molecular etiologies and biological underpinnings of POI.Design, Setting, and Participants: We applied exome sequencing (ES) and family-based genomics to 42 affected female individuals from 36 unrelated Turkish families, including 31 with reported parental consanguinity.Results: This analysis identified likely damaging, potentially contributing variants and molecular diagnoses in 16 families (44%), including 11 families with likely damaging variants in known genes and five families with predicted deleterious variants in disease genes (IGSF10, MND1, MRPS22, and SOHLH1) not previously associated with POI. Of the 16 families, 2 (13%) had evidence for potentially pathogenic variants at more than one locus. Absence of heterozygosity consistent with identity-by-descent mediated recessive disease burden contributes to molecular diagnosis in 15 of 16 (94%) families. GeneMatcher allowed identification of additional families from diverse genetic backgrounds.Conclusions: ES analysis of a POI cohort further characterized locus heterogeneity, reaffirmed the association of genes integral to meiotic recombination, demonstrated the likely contribution of genes involved in hypothalamic development, and documented multilocus pathogenic variation suggesting the potential for oligogenic inheritance contributing to the development of POI

    Characterization of a Large Nationwide Cohort

    Get PDF
    Context: Primary adrenal insufficiency (PAI) is a life-threatening condition that is often due to monogenic causes in children. Although congenital adrenal hyperplasia occurs commonly, several other important molecular causes have been reported, often with overlapping clinical and biochemical features. The relative prevalence of these conditions is not known, but making a specific diagnosis can have important implications for management.Objective: The objective of the study was to investigate the clinical and molecular genetic characteristics of a nationwide cohort of children with PAI of unknown etiology.Design: A structured questionnaire was used to evaluate clinical, biochemical, and imaging data. Genetic analysis was performed using Haloplex capture and next-generation sequencing. Patients with congenital adrenal hyperplasia, adrenoleukodystrophy, autoimmune adrenal insufficiency, or obvious syndromic PAI were excluded.Setting: The study was conducted in 19 tertiary pediatric endocrinology clinics.Patients: Ninety-five children (48 females, aged 0-18 y, eight familial) with PAI of unknown etiology participated in the study.Results: A genetic diagnosis was obtained in 77 patients (81%). The range of etiologies was as follows: MC2R (n = 25), NR0B1 (n = 12), STAR (n = 11), CYP11A1 (n = 9), MRAP (n = 9), NNT (n = 7), ABCD1 (n = 2), NR5A1 (n = 1), and AAAS (n = 1). Recurrent mutations occurred in several genes, such as c.560delT in MC2R, p.R451W in CYP11A1, and c. IVS3ds + 1delG in MRAP. Several important clinical and molecular insights emerged.Conclusion: This is the largest nationwide study of the molecular genetics of childhood PAI undertaken. Achieving a molecular diagnosis in more than 80% of children has important translational impact for counseling families, presymptomatic diagnosis, personalized treatment (eg, mineralocorticoid replacement), predicting comorbidities (eg, neurological, puberty/fertility), and targeting clinical genetic testing in the future

    Retinal Glia

    No full text
    corecore