44 research outputs found

    Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes.

    Get PDF
    Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross-biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross-validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies

    Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide

    Get PDF
    12 páginas.- 4 figuras.- 49 referencia.- Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41558-023-01646-z .- Full-text access to a view-only version (Acceso a texto completo de sólo lectura en este enlace) https://rdcu.be/c8vZiUrban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.This study was supported by a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (URBANFUN), and by BES Grant Agreement No. LRB17\1019 (MUSGONET). M.D-B., P.G-P., J.D. and A.R. acknowledge support from TED2021-130908B-C41/AEI/10.13039/501100011033/ Unión Europea NextGenerationEU/PRTR. M.D.-B. also acknowledges support from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. was also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación’) associated with the research project P20_00879 (ANDABIOMA). D.J.E. was supported by the Hermon Slade Foundation. J.P.V. thanks the Science and Engineering Research Board (SERB) (EEQ/2021/001083, SIR/2022/000626) and the Department of Science and Technology (DST), India (DST/INT/SL/P-31/2021) and Banaras Hindu Univeristy-IoE (6031)-incentive grant for financial assistance for research in plant-microbe interaction and soil microbiome. J.D. and A. Rodríguez acknowledge support from the FCT (2020.03670.CEECIND and SFRH/BDP/108913/2015, respectively), as well as from the MCTES, FSE, UE and the CFE (UIDB/04004/2021) research unit financed by FCT/MCTES through national funds (PIDDAC).Peer reviewe

    Global hotspots for soil nature conservation

    Get PDF
    19 páginas.- 5 figuras.- 98 referencias.- Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-05292-xSoils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils—that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services—peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.This project received funding from the British Ecological Society (agreement LRA17\1193; MUSGONET). C.A.G. and N.E. were funded by DFG–FZT 118, 202548816; C.A.G. was supported by FCT-PTDC/BIA-CBI/2340/2020; M.D.-B. was supported by RYC2018-025483-I, PID2020-115813RA-I00\MCIN/AEI/10.13039/501100011033 and P20_00879. M.A.M.-M. and S.A. were funded by FONDECYT 1181034 and ANID-PIA-Anillo INACH ACT192057. J.D. and A.R. acknowledge support from IF/00950/2014, 2020.03670.CEECIND, SFRH/BDP/108913/2015 and UIDB/04004/2020. Y.-R.L. was supported by 2662019PY010 from the FRFCU. L.T. was supported by the ESF grant PRG632. F.B. and J.L.M. were supported by i-LINK+2018 (LINKA20069) funded by CSIC. C.T.-D. was supported by the Grupo de Biodibersidad & Cambio Global UBB–GI 170509/EF. C.P. was supported by the EU H2020 grant agreement 101000224. H.C. was supported by NSFC32101335, FRFCU2412021QD014 and CPSF2021M690589. J.P.V. was supported by DST (DST/INT/SL/P-31/2021) SERB (EEQ/2021/001083) and BHU-IoE (6031).Peer reviewe

    Finite size scaling in the local abundances of geographic populations

    No full text
    We analyzed the statistical distribution of intra-specific local abundances for a set North American breeding bird species. We constructed frequency plots for every species and found that they showed long-tail power-law behavior, truncated at an upper abundance cut-off value. Based on finite size scaling arguments, we investigated whether frequency curves may be considered scaled copies of each other. Data collapse was possible after taking powers of the total abundance of each species, in order to correct deviations from the underlying universal finite size scaling function (UFSS). The UFSS power law exponent oscillated in time within the regime of unbounded variance, which is consistent with the wild fluctuations that characterize ecological phenomena. We speculate that our results may eventually be linked to other law-like macroecological phenomena, such as energetic constraints reported in allometric scaling

    Number of conspecifics and reproduction in the invasive plant Eschscholzia californica (Papaveraceae): Is there a pollinator-mediated Allee effect?

    No full text
    © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.The component Allee effect has been defined as 'a positive relationship between any measure of individual fitness and the number or density of conspecifics'. Larger plant populations or large patches have shown a higher pollinator visitation rate, which may give rise to an Allee effect in reproduction of the plants. We experimentally tested the effect of number of conspecifics on reproduction and pollinator visitation in Eschscholzia californica Cham., an invasive plant in Chile. We then built patches with two, eight and 16 flowering individuals of E. californica (11 replicates per treatment) in an area characterised by dominance of the study species. We found that E. californica exhibits a component Allee effect, as the number of individuals of this species has a positive effect on individual seed set. However, individual fruit production was not affected by the number of plants examined. Pollinator vi

    Biocultural Homogenization in Urban Settings: Public Knowledge of Birds in City Parks of Santiago, Chile

    No full text
    An understudied consequence of growing urbanization is the rapid and concurrent loss of native biological and cultural diversity. Here, we measured the concordance between avian species richness in public green areas of the city of Santiago, Chile, and the corresponding knowledge of local citizens of this avian diversity. To assess this correspondence, we sampled avian species richness in 10 representative city parks and surveyed the awareness of avian diversity by park visitors as well as their ability to identify bird species. We found no significant relationship between estimated bird diversity from field sampling and their perception by park visitors, suggesting that visitors underestimate avian diversity in city parks because they perceive only a small fraction of the overall diversity, with their awareness especially biased towards the most abundant species. Exotic bird species comprise the majority of the latter group. This result was observed regardless of whether the city park had high or low bird diversity. Public knowledge of birds did not relate to the species richness present at city parks, and was strongly biased towards the most abundant, widely distributed, and primarily exotic species. This result agrees with the biocultural homogenization hypothesis, documenting the role of urban areas in this global process
    corecore