101 research outputs found

    Automatic Deduction in Dynamic Geometry using Sage

    Full text link
    We present a symbolic tool that provides robust algebraic methods to handle automatic deduction tasks for a dynamic geometry construction. The main prototype has been developed as two different worksheets for the open source computer algebra system Sage, corresponding to two different ways of coding a geometric construction. In one worksheet, diagrams constructed with the open source dynamic geometry system GeoGebra are accepted. In this worksheet, Groebner bases are used to either compute the equation of a geometric locus in the case of a locus construction or to determine the truth of a general geometric statement included in the GeoGebra construction as a boolean variable. In the second worksheet, locus constructions coded using the common file format for dynamic geometry developed by the Intergeo project are accepted for computation. The prototype and several examples are provided for testing. Moreover, a third Sage worksheet is presented in which a novel algorithm to eliminate extraneous parts in symbolically computed loci has been implemented. The algorithm, based on a recent work on the Groebner cover of parametric systems, identifies degenerate components and extraneous adherence points in loci, both natural byproducts of general polynomial algebraic methods. Detailed examples are discussed.Comment: In Proceedings THedu'11, arXiv:1202.453

    Seady-state natural circulation analysis with computational fluid dynamic codes of a liquid metal-cooled accelerator driven system

    Full text link
    A new innovative nuclear installation is under research in the nuclear community for its potential application to nuclear waste management and, above all, for its capability to enhance the sustainability of nuclear energy in the future as component of a new nuclear fuel cycle in which its efficiency in terms of primary Uranium ore profit and radioactive waste generation will be improved. Such new nuclear installations are called accelerator driven system (ADS) and are the result of a profitable symbiosis between accelerator technology, high-energy physics and reactor technology. Many ADS concepts are based on the utilization of heavy liquid metal (HLM) coolants due to its neutronic and thermo-physical properties. Moreover, such coolants permit the operation in free circulation mode, one of the main aims of passive systems. In this paper, such operation regime is analysed in a proposed ADS design applying computational fluid dynamics (CFD)

    Using a free open source software to teach mathematics

    Get PDF
    We present the experience of the authors teaching mathematics to freshmen engineering students with the help of the open source computer algebra system Sage. We describe some teaching resources and present an ad hoc distribution of Sage used by the authors

    Hydraulics and heat transfer in the IFMIF liquid lithium target: CFD calculations

    Get PDF
    CFD (Computational fluid dynamics) calculation turns out to be a good approximation to the real behavior of the lithium (Li) flow of the target of the international fusion materials irradiation facility (IFMIF). A three-dimensional (3D) modelling of the IFMIF design Li target assembly, made with the CFD commercial code ANSYS-FLUENT has been carried out. The simulation by a structural mesh is focused on the thermal-hydraulic analysis inside the Li jet flow. For, this purpose, the two deuteron beams energy deposition profile is modelled as an energy source term inside the volume of liquid affected. Turbulence is estimated using the RNG k– model, and a surface-tracking technique applied to a fixed Eulerian mesh called volume of fluid (VOF) is used to determine the position of the free surface. Calculations varying the jet velocity from a range of 10–20 m/s, show that maximum calculated temperatures are still below the lithium's boiling point, due to the increase of the pressure induced by centrifugal forc

    Performance of a transmutation advanced device for sustainable energy application

    Get PDF
    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas-cooled pebble bed accelerator driven system, TADSEA (Transmutation Advanced Device for Sustainable Energy Application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, cooled by helium which enables high temperatures (in the order of 1200 K), to generate hydrogen from water either by high temperature electrolysis or by thermochemical cycles. For designing this device several configurations were studied, including several reflectors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW of thermal power. In this paper new studies performed on deep burn in-core fuel management strategy for LWR waste are presented. The fuel cycle on TADSEA device has been analyzed based on both: driven and transmutation fuel that had been proposed by the General Atomic design of a gas turbine-modular helium reactor. The transmutation results of the three fuel management strategies, using driven, transmutation and standard LWR spent fuel were compared, and several parameters describing the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain, are also presente

    Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple

    Full text link
    This paper describes the influence of the solar multiple on the annual performance of parabolic trough solar thermal power plants with direct steam generation (DSG). The reference system selected is a 50 M We DSG power plant, with thermal storage and auxiliary natural gas-fired boiler. It is considered that both systems are necessary for an optimum coupling to the electricity grid. Although thermal storage is an opening issue for DSG technology, it gives an additional degree of freedom for plant performance optimization. Fossil hybridization is also a key element if a reliable electricity production must be guaranteed for a defined time span. Once the yearly parameters of the solar power plant are calculated, the economic analysis is performed, assessing the effect of the solar multiple in the levelized cost of electricity, as well as in the annual natural gas consumption

    Tuning the endocytosis mechanism of Zr-based metal−organic frameworks through linker functionalization

    Get PDF
    A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an effi-cient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4'-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol, en-hancing their therapeutic activity when loaded with drugs
    corecore