28 research outputs found

    Establishing an online resource to facilitate global collaboration and inclusion of underrepresented populations:Experience from the MJFF Global Genetic Parkinson's Disease Project

    Get PDF
    Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.</p

    Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio

    Writers Are Common among Parkinson’s Disease Patients: A Longitudinal Study

    No full text
    Parkinson’s disease (PD) patients may have a specific personality profile, which includes being introvert, cautious and devoted to hard work. The evaluation of psychological characteristics must be evaluated according to methods for assessments of personality disorders. Such evaluations are often time-consuming and available only in research settings. The “parkinsonian trait” may be established early in life but may change with disease progression. To overcome this long interval before onset of PD questions on literary activities were included in the medical record. Three percent of PD patients could be defined as writers, significantly higher than observed in the general population. PD writers published their first books long before onset of disease. Being a writer is an extrovert trait meaning that the patient is prepared for criticism and publicity. We suggest that questions regarding personal activities prior to disease onset add valuable information on personality which differs significantly from traits observed later in the disease period

    Longitudinal Monitoring of Parkinson's Disease in Different Ethnic Cohorts: The DodoNA and LONG-PD Study

    No full text
    Background: Different factors influence severity, progression, and outcomes in Parkinson's disease (PD). Lack of standardized clinical assessment limits comparison of outcomes and availability of well-characterized cohorts for collaborative studies. Methods: Structured clinical documentation support (SCDS) was developed within the DNA Predictions to Improve Neurological Health (DodoNA) project to standardize clinical assessment and identify molecular predictors of disease progression. The Longitudinal Clinical and Genetic Study of Parkinson's Disease (LONG-PD) was launched within the Genetic Epidemiology of Parkinson's disease (GEoPD) consortium using a Research Electronic Data Capture (REDCap) format mirroring the DodoNA SCDS. Demographics, education, exposures, age at onset (AAO), Unified Parkinson's Disease Rating Scale (UPDRS) parts I-VI or Movement Disorders Society (MDS)-UPDRS, Montreal Cognitive Assessment (MoCA)/Short Test of Mental Status (STMS)/Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), Epworth Sleepiness Scale (ESS), dopaminergic therapy, family history, nursing home placement, death and blood samples were collected. DodoNA participants (396) with 6 years of follow-up and 346 LONG-PD participants with up to 3 years of follow-up were analyzed using group-based trajectory modeling (GBTM) focused on: AAO, education, family history, MMSE/MoCA/STMS, UPDRS II-II, UPDRS-III tremor and bradykinesia sub-scores, Hoehn and Yahr staging (H&Y) stage, disease subtype, dopaminergic therapy, and presence of autonomic symptoms. The analysis was performed with either cohort as the training/test set. Results: Patients are classified into slowly and rapidly progressing courses by AAO, MMSE score, H &Y stage, UPDRS-III tremor and bradykinesia sub-scores relatively early in the disease course. Late AAO and male sex assigned patients to the rapidly progressing group, whereas tremor to the slower progressing group. Classification is independent of which cohort serves as the training set. Frequencies of disease-causing variants in LRRK2 and GBA were 1.89 and 2.96%, respectively. Conclusions: Standardized clinical assessment provides accurate phenotypic characterization in pragmatic clinical settings. Trajectory analysis identified two different trajectories of disease progression and determinants of classification. Accurate phenotypic characterization is essential in interpreting genomic information that is generated within consortia, such as the GEoPD, formed to understand the genetic epidemiology of PD. Furthermore, the LONGPD study protocol has served as the prototype for collecting standardized phenotypic information at GEoPD sites. With genomic analysis, this will elucidate disease etiology and lead to targeted therapies that can improve disease outcomes

    Role of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease

    No full text
    Sepiapterin reductase (SPR) gene is an enzyme which catalyses the final step of tetrahydrobiopterin synthesis (BH4) and was implicated in Parkinson's disease (PD) pathogenesis as a candidate gene for PARK3 locus. A number of studies yielded association of the PARK3 locus with PD, and SPR knockout mice were shown to display parkinsonian features. To evaluate the role of SPR gene polymorphisms in diverse populations in PD, we performed collaborative analyses in the Genetic Epidemiology of Parkinson Disease (GEO-PD) Consortium. A total of 5 single nucleotide polymorphisms (3 in the promoter region and 2 in the 3â€Č untranslated region [UTR]) were genotyped. Fixed as well as random effect models were used to provide summary risk estimates of SPR variants. A total of 19 sites provided data for 6547 cases and 9321 controls. Overall odds ratio estimates varied from 0.92 to 1.01. No overall association with the SPR gene using either fixed effect or random effect model was observed in the studied population. I Metric varied from 0% to 36.2%. There was some evidence for an association for participants of North European/Scandinavian descent with the strongest signal for rs1876487 (odds ratio = 0.82; p value = 0.003). Interestingly, families which were used to map the PARK3 locus, have Scandinavian ancestry suggesting a founder effect. In conclusion, this large association study for the SPR gene revealed no association for PD worldwide. However, taking the initial mapping of the PARK3 into account, the role of a population-specific effect warrants consideration in future studies
    corecore