15 research outputs found

    Microbial β-Glucosidase: sources, production and applications

    Get PDF
    Cellulose is the most abundant biopolymer in biosphere and the major constituent of plant biomass. Cellulose polymer is made up of β-glucose units linked by β-glucosidic bonds. Cellulase is an enzymatic system that catalyzes the hydrolysis of cellulose polymer to glucose monomers. This enzymatic system consists of three individual enzymes namely endoglucanase, exoglucanase and β-glucosidase which act synergistically to degrade cellulose molecules into glucose. Cellulases are produced by bacteria, fungi, plants, and animals and used in many industrial applications such as textile industries, laundry and detergent industries, paper and pulp industry, animal feeds, and biofuels production. β-Glucosidase is a diverse group of enzymes with wide distribution in bacteria, fungi, plants and animals and has the potential to be utilized in various biotechnological processes such as biofuel production, isoflavone hydrolysis, flavor enhancement and alkyl/aryl β-D-glucoside and oligosaccharides synthesis. Thus, there is increased demand of β-glucosidase production from microbial sources under profitable industrial conditions. In this review, β-glucosidase classification, localization, and mechanism of action will be described. Subsequently, the various sources of β-glucosidase for industrial sector will be discussed. Moreover, Fermentation methods and various parameters affecting β-glucosidase production will be highlighted on the light of recent findings of different researchers. Finally, β-glucosidase applications in biofuel production, flavors enhancement, isoflavones hydrolysis, cassava detoxification and oligosaccharide synthesis will be described

    Characterization of thermophilic β-Glucosidase of rhizospheric bacterial strain (LSKB15) isolated from Cholistan Desert, Pakistan

    Get PDF
    Fifty thermophilic bacterial strains isolated from rhizospheric soil of Cholistan desert, Pakistan, and designated as LSKB01-LSKB50 were screened for β-glucosidase gene (bgl) belonging to glycoside hydrolase family 1 (GH 1) using PCR technique. Subsequently, the same strains were screened for extracellular β-glucosidase production using esculin as substrate. All fifty strains were shown to be amplified for conserved region of bgl gene and to secrete extracellular β-glucosidase. One strain (LSKB15) secreted relative high amount of this enzyme as indicating by size of ferric-esculetin precipitate. This strain was further cultivated on cellulose containing media and β-glucosidase was purified by ammonium sulfate, dialysis and gel filtration chromatography. The purified enzyme showed an optimal temperature of 60°C and an optimal pH of 7. It also showed excellent temperature and pH stability retaining > 90% activity after incubation for 2 h at pH 5-8 and 40-60°C. Finally, the purified enzyme was run on Native-PAGE and subsequently incubated in phosphate buffer containing 5 mM of 4-methylumbelliferyl-β-D-glucoside (4-MUG) for 15 min at 50°C and visualized by UV light as white band. We concluded that thermophilic LSKB15 β- glucosidase may work with other cellulase to degrade available cellulose synthesized by plant and the properties exhibited by it such as high temperature and pH stability pointed out its potential industrial importance

    Microbial β-Glucosidases: screening, characterization, cloning and applications

    Get PDF
    Cellulose is the most abundant biomaterial in the biosphere and the major component of plant biomass. Cellulase is an enzymatic system required for conversion of renewable cellulose biomass into free sugar for subsequent use in different applications. Cellulase system mainly consists of three individual enzymes namely: endoglucanase, exoglucanase and β-glucosidases. β-Glucosidases are ubiquitous enzymes found in all living organisms with great biological significance. β-Glucosidases have also tremendous biotechnological applications such as biofuel production, beverage industry, food industry, cassava detoxification and oligosaccharides synthesis. Microbial β-glucosidases are preferred for industrial uses because of robust activity and novel properties exhibited by them. This review aims at describing the various biochemical methods used for screening and evaluating β-glucosidases activity from microbial sources. Subsequently, it generally highlights techniques used for purification of β-glucosidases. It then elaborates various biochemical and molecular properties of this valuable enzyme such as pH and temperature optima, glucose tolerance, substrate specificity, molecular weight, and multiplicity. Furthermore, it describes molecular cloning and expression of bacterial, fungal and metagenomic β-glucosidases. Finally, it highlights the potential biotechnological applications of β-glucosidases

    Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy

    Get PDF
    Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test

    Alternative routes for tranexamic acid treatment in obstetric bleeding (WOMAN-PharmacoTXA trial): a randomised trial and pharmacological study in caesarean section births.

    Get PDF
    OBJECTIVE: To examine the safety, efficacy and pharmacology of intravenous (IV), intramuscular (IM) and oral tranexamic acid (TXA) use in pregnant women. DESIGN: Randomised, open-label trial. SETTING: Hospitals in Pakistan and Zambia. POPULATION: Women giving birth by caesarean section. METHODS: Women were randomised to receive 1 g IV, 1 g IM, 4 g oral TXA or no TXA. Adverse events in women and neonates were recorded. TXA concentration in whole blood was measured and the concentrations over time were examined with population pharmacokinetics. The relationship between drug exposure and D-dimer was explored. The trial registration is NCT04274335. MAIN OUTCOME MEASURES: Concentration of TXA in maternal blood. RESULTS: Of the 120 women included in the randomised safety study, there were no serious maternal or neonatal adverse events. TXA concentrations in 755 maternal blood and 87 cord blood samples were described by a two-compartment model with one effect compartment linked by rate transfer constants. Maximum maternal concentrations were 46.9, 21.6 and 18.1 mg/L for IV, IM and oral administration, respectively, and 9.5, 7.9 and 9.1 mg/L in the neonates. The TXA response was modelled as an inhibitory effect on the D-dimer production rate. The half-maximal inhibitory concentration (IC50 ) was 7.5 mg/L and was achieved after 2.6, 6.4 and 47 minutes with IV, IM and oral administration of TXA, respectively. CONCLUSIONS: Both IM and oral TXA are well tolerated. Oral TXA took about 1 hour to reach minimum therapeutic concentrations and would not be suitable for emergency treatment. Intramuscular TXA inhibits fibrinolysis within 10 minutes and may be a suitable alternative to IV

    Brain cell-specific origin of circulating microRNA biomarkers in experimental temporal lobe epilepsy

    Get PDF
    The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain. To explore the link between circulating miRNAs and the pathophysiology of epilepsy, we first sequenced argonaute 2 (Ago2)-bound miRNAs in plasma samples collected from mice subject to status epilepticus induced by intraamygdala microinjection of kainic acid. This identified time-dependent changes in plasma levels of miRNAs with known neuronal and microglial-cell origins. To explore whether the circulating miRNAs had originated from the brain, we generated mice expressing FLAG-Ago2 in neurons or microglia using tamoxifen-inducible Thy1 or Cx3cr1 promoters, respectively. FLAG immunoprecipitates from the plasma of these mice after seizures contained miRNAs, including let-7i-5p and miR-19b-3p. Taken together, these studies confirm that a portion of the circulating pool of miRNAs in experimental epilepsy originates from the brain, increasing support for miRNAs as mechanistic biomarkers of epilepsy

    Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Post-partum haemorrhage is the leading cause of maternal death worldwide. Early administration of tranexamic acid reduces deaths due to bleeding in trauma patients. We aimed to assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage. Methods In this randomised, double-blind, placebo-controlled trial, we recruited women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section from 193 hospitals in 21 countries. We randomly assigned women to receive either 1 g intravenous tranexamic acid or matching placebo in addition to usual care. If bleeding continued after 30 min, or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Patients were assigned by selection of a numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Participants, care givers, and those assessing outcomes were masked to allocation. We originally planned to enrol 15 000 women with a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. Although tranexamic acid could influence the risk of death in these cases, it could not affect the risk of hysterectomy. We therefore increased the sample size from 15 000 to 20 000 women in order to estimate the effect of tranexamic acid on the risk of death from post-partum haemorrhage. All analyses were done on an intention-to-treat basis. This trial is registered with ISRCTN76912190 (Dec 8, 2008); ClinicalTrials.gov, number NCT00872469; and PACTR201007000192283. Findings Between March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 10 036 and 9985, respectively, were included in the analysis. Death due to bleeding was significantly reduced in women given tranexamic acid (155 [1·5%] of 10 036 patients vs 191 [1·9%] of 9985 in the placebo group, risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045), especially in women given treatment within 3 h of giving birth (89 [1·2%] in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). All other causes of death did not differ significantly by group. Hysterectomy was not reduced with tranexamic acid (358 [3·6%] patients in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The composite primary endpoint of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] deaths or hysterectomies in the tranexamic acid group vs 546 [5·5%] in the placebo group, RR 0·97, 95% CI 0·87-1·09; p=0·65). Adverse events (including thromboembolic events) did not differ significantly in the tranexamic acid versus placebo group. Interpretation Tranexamic acid reduces death due to bleeding in women with post-partum haemorrhage with no adverse effects. When used as a treatment for postpartum haemorrhage, tranexamic acid should be given as soon as possible after bleeding onset. Funding London School of Hygiene & Tropical Medicine, Pfizer, UK Department of Health, Wellcome Trust, and Bill & Melinda Gates Foundation

    An investigation into the expression, content and function of exosomes in an experimental model of epilepsy

    No full text
    Epilepsy is a serious neurological disease characterised by recurrent unprovoked seizures affecting 65 million people worldwide. Current anti-epileptic therapies target only symptomatic seizures and are not fully effective in ameliorating disease pathophysiology. Temporal lobe epilepsy is the most common form of epilepsy in adults and a third of temporal lobe epilepsy patients are drug refractory, and the underlying pathophysiology remains to be fully elucidated. Recent work revealed microRNAs serve important functions in cells, in post-transcriptional regulation of genes associated with altered neuronal structure, inflammation and cell death. All of which are pathological hallmarks of epilepsy. While the site of these effects is assumed to be intracellular, exosomes have recently emerged as carriers of microRNAs between cells. Exosome-carried microRNAs may represent a novel mechanism of cell-to-cell communication within the brain, both in health and disease states. The motivation for the studies was to identify whether status epilepticus and/or chronic epilepsy is associated with the formation of unique exosome profiles that are distinct from controls. Here, the intra-amygdala kainic acid model of status epilepticus was used to carry out most studies in mice. Messenger RNA and protein levels of various genes involved in exosome biogenesis pathway were analysed at key timepoints in our mouse model of epilepsy. This analysis revealed a time and brain region specific regulation of exosome biogenesis components in epilepsy. In particular, significant changes were found in the dentate gyrus of the hippocampus. The results suggested a role for this process in pathogenesis and maintenance of the epileptic state. To investigate this, two protocols were established within our team for isolating exosomes from brain tissue; a filtration and centrifugation protocol, and one using a commercial precipitation kit. Successful exosome-enriched fractions were confirmed by protein markers, zetasizer and electron microscopy. Furthermore, RNA Sequencing was carried out to characterise microRNA content in control versus mouse epileptic tissue. A set of microRNAs were found common to exosomes within the brain regardless of method of extraction. Detected were both neuron- and glia- enriched microRNAs within isolated exosomes. We determined that several miRNAs within exosome-enriched fractions were differentially expressed during epileptogenesis and experimental epilepsy such as miR-21a-3p, miR-21a-5p and miR-146a-5p. By comparing to data already obtained within our team, differential expression highlighted in these exosome-enriched fractions mainly reflected what was happening at the whole hippocampal level at 24 hours and at 2 weeks. In addition, results show successful attenuation of exosome production in vivo as judged by reduction in surrogate markers of extracellular vesicles (Alix and Flotillin1). This reduction in protein by exosome production-inhibitors GW4869 and cambinol was brought forward to final functional study to investigate if exosome release following status epilepticus plays a causal role in the pathogenesis of experimental temporal lobe epilepsy and subsequent development of recurrent seizures. In summary, the thesis was an investigation into the expression, content and function of exosomes in an experimental model of epilepsy. We identified time and region specific changes in the biogenesis pathway of exosomes and demonstrated that exosome-enriched fractions contain microRNAs which are differentially expressed in epileptogenesis and in epilepsy. Finally, we managed to attenuate expression levels of exosome-related proteins in vivo in order to later examine the effect on the epileptic state.</div

    Seasonality and trend analysis of tuberculosis in Lahore, Pakistan from 2006 to 2013

    Get PDF
    Tuberculosis (TB) is a respiratory infectious disease which shows seasonality. Seasonal variation in TB notifications has been reported in different regions, suggesting that various geographic and demographic factors are involved in seasonality. The study was designed to find out the temporal and seasonal pattern of TB incidence in Lahore, Pakistan from 2006 to 2013 in newly diagnosed pulmonary TB cases. SPSS version 21 software was used for correlation to determine the temporal relationship and time series analysis for seasonal variation. Temperature was found to be significantly associated with TB incidence at the 0.01 level with p = 0.006 and r = 0.477. Autocorrelation function and partial autocorrelation function showed a significant peak at lag 4 suggesting a seasonal component of the TB series. Seasonal adjusted factor showed peak seasonal variation in the second quarter (April–June). The expert modeler predicted the Holt–Winter’s additive model as the best fit model for the time series, which exhibits a linear trend with constant (additive) seasonal variations, and the stationary R2 value was found to be 0.693. The forecast shows a declining trend with seasonality. A significant temporal relation with a seasonal pattern and declining trend with variable amplitudes of fluctuation was observed in the incidence of TB

    Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus

    Get PDF
    Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis.European Commission - European Regional Development FundEuropean Commission - Seventh Framework Programme (FP7)FutureNeuro industry partner
    corecore