15 research outputs found

    Mechanical and Tribological Aspects of Microelectronic Wire Bonding

    Get PDF
    The goal of this thesis is on improving the understanding of mechanical and tribological mechanisms in microelectronic wire bonding. In particular, it focusses on the development and application of quantitative models of ultrasonic (US) friction and interfacial wear in wire bonding. Another objective of the thesis is to develop a low-stress Cu ball bonding process that minimizes damage to the microchip. These are accomplished through experimental measurements of in situ US tangential force by piezoresistive microsensors integrated next to the bonding zone using standard complementary metal oxide semiconductor (CMOS) technology. The processes investigated are thermosonic (TS) Au ball bonding on Al pads (Au-Al process), TS Cu ball bonding on Al pads (Cu-Al process), and US Al wedge-wedge bonding on Al pads (Al-Al process). TS ball bonding processes are optimized with one Au and two Cu wire types, obtaining average shear strength (SS) of more than 120 MPa. Ball bonds made with Cu wire show at least 15% higher SS than those made with Au wire. However, 30% higher US force induced to the bonding pad is measured for the Cu process using the microsensor, which increases the risk of underpad damage. The US force can be reduced by: (i) using a Cu wire type that produces softer deformed ball results in a measured US force reduction of 5%; and (ii) reducing the US level to 0.9 times the conventionally optimized level, the US force can be reduced by 9%. It is shown that using a softer Cu deformed ball and a reduced US level reduces the extra stress observed with Cu wire compared to Au wire by 42%. To study the combined effect of bond force (BF) and US in Cu ball bonding, the US parameter is optimized for eight levels of BF. For ball bonds made with conventionally optimized BF and US settings, the SS is ≈ 140 MPa. The amount of Al pad splash extruding out of bonded ball interface (for conventionally optimized BF and US settings) is between 10–12 µm. It can be reduced to 3–7 µm if accepting a SS reduction to 50–70 MPa. For excessive US settings, elliptical shaped Cu bonded balls are observed, with the major axis perpendicular to the US direction. By using a lower value of BF combined with a reduced US level, the US force can be reduced by 30% while achieving an average SS of at least 120 MPa. These process settings also aid in reducing the amount of splash by 4.3 µm. The US force measurement is like a signature of the bond as it allows for detailed insight into the tribological mechanisms during the bonding process. The relative amount of the third harmonic of US force in the Cu-Al process is found to be five times smaller than in the Au-Al process. In contrast, in the Al-Al process, a large second harmonic content is observed, describing a non-symmetric deviation of the force signal waveform from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. The analysis of harmonics of the US force indicates that although slightly different from each other, stick-slip friction is an important mechanism in all these wire bonding variants. A friction power theory is used to derive the US friction power during Au-Al, Cu-Al, and Al-Al processes. Auxiliary measurements include the current delivered to the US transducer, the vibration amplitude of the bonding tool tip in free-air, and the US tangential force acting on the bonding pad. For bonds made with typical process parameters, several characteristic values used in the friction power model such as the ultrasonic compliance of the bonding system and the profile of the relative interfacial sliding amplitude are determined. The maximum interfacial friction power during Al-Al process is at least 11.5 mW (3.9 W/mm²), which is only about 4.8% of the total electrical power delivered to the US transducer. The total sliding friction energy delivered to the Al-Al wedge bond is 60.4 mJ (20.4 J/mm²). For the Au-Al and Cu-Al processes, the US friction power is derived with an improved, more accurate method to derive the US compliance. The method uses a multi-step bonding process. In the first two steps, the US current is set to levels that are low enough to prevent sliding. Sliding and bonding take place during the third step, when the current is ramped up to the optimum value. The US compliance values are derived from the first two steps. The average maximum interfacial friction power is 10.3 mW (10.8 W/mm²) and 16.9 mW (18.7 W/mm²) for the Au-Al and Cu-Al processes, respectively. The total sliding friction energy delivered to the bond is 48.5 mJ (50.3 J/mm²) and 49.4 mJ (54.8 J/mm²) for the Au-Al and Cu-Al processes, respectively. Finally, the sliding wear theory is used to derive the amount of interfacial wear during Au-Al and Cu-Al processes. The method uses the US force and the derived interfacial sliding amplitude as the main inputs. The estimated total average depth of interfacial wear in Au-Al and Cu-Al processes is 416 nm and 895 nm, respectively. However, the error of estimation of wear in both the Au-Al and the Cu-Al processes is ≈ 50%, making this method less accurate than the friction power and energy results. Given the error in the determination of compliance in the Al-Al process, the error in the estimation of wear in the Al-Al process might have been even larger; hence the wear results pertaining to the Al-Al process are not discussed in this study

    Spontaneous Per Oral Explantation of Intragastric Balloon—A Case Report

    Get PDF
    AbstractObesity is a modern-day pandemic that was once a disease of only the affluent Western world. However, over the years it has achieved a global footprint. The need to treat obesity with nonsurgical means in patients who do not qualify or refuse bariatric surgery or in some patients as a bridge to surgery is all the more relevant now. It is for this subset of patients that a modality like the intragastric balloon holds promise. Previously reported complications of the balloon include esophagitis, severe nausea and vomiting, abdominal cramps, hiccoughs, belching, intestinal obstruction, gastric perforation, pancreatitis, and aspiration.1 Balloon rupture/leak leading to intestinal migration and obstruction has been managed by surgical intervention. Review of literature did not reveal any report of spontaneous per oral explantation of the deflated balloon. We are reporting a case of the same

    Patient Safety and organizational Safety Culture in Surgery: A Need of an Hour in the developing countries

    Get PDF
    Every year, more than 200 million surgeries are performed around the world, and recent statistics show that adverse event rates for surgical pathologies remain unacceptably high, despite several national and global patient safety initiatives over the last decade. Patient safety is diverse and highly complicated in nature, with several critical components. Although concern for patient safety is fundamental in health care practice, its transition into knowledge is comparatively recent, and hence patient safety may be deemed a "new" field. Current surgical safety guidelines and checklists are generic and not adapted to specific patient concerns and risk factors in surgical subspecialties. All surgical practitioners and health care organizations must therefore become better aware of the fundamental context of patient safety, actively participate in endeavors to integrate patient safety measures in daily practice, and foster a patient safety culture. The purpose of this review article is to outline patient safety in surgical techniques that should be adopted and implemented

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Laparoscopic excision of large lower rectal gastrointestinal stromal tumour (GIST): A case report

    No full text
    Gastrointestinal stromal tumour (GIST) involving rectum is rare. No definite method of treatment has been established because of a small number of cases being reported. It is usually managed with invasive or ablative surgery, such as abdominoperineal resection (APR). The acceptance of minimally invasive (laparoscopic) surgery in colorectal disease plays a pivotal role in improving the postoperative quality of life. We report a case of a large lower rectal GIST who underwent laparoscopic excision of tumour through a subserosal approach whilst preserving the anal sphincter and without any rectal resection

    Tumor-Induced Osteomalacia Caused by Primary Fibroblast Growth Factor 23 Secreting Neoplasm in Axial Skeleton: A Case Report

    Get PDF
    We report the case of a 66-year-old woman with tumor-induced osteomalacia (TIO) caused by fibroblast growth factor 23 (FGF-23) secreting mesenchymal tumor localized in a lumbar vertebra and review other cases localized to the axial skeleton. She presented with nontraumatic low back pain and spontaneous bilateral femur fractures. Laboratory testing was remarkable for low serum phosphorus, phosphaturia, and significantly elevated serum FGF-23 level. Magnetic resonance imaging (MRI) of the lumbar spine showed a focal lesion in the L-4 vertebra which was hypermetabolic on positron emission tomography (PET) scan. A computed tomography (CT) guided needle biopsy showed a low grade spindle cell neoplasm with positive FGF-23 mRNA expression by reverse transcriptase polymerase chain reaction (RT-PCR), confirming the diagnosis of a phosphaturic mesenchymal tumor mixed connective tissue variant (PMTMCT). The patient elected to have surgery involving anterior resection of L-4 vertebra with subsequent normalization of serum phosphorus. Including the present case, we identified 12 cases of neoplasms localized to spine causing TIO. To our knowledge, this paper represents the first documented case of lumbar vertebra PMT causing TIO. TIO is a rare metabolic bone disorder that carries a favorable prognosis. When a lesion is identifiable, surgical intervention is typically curative

    Patient Safety and organizational Safety Culture in Surgery: A Need of an Hour in the developing countries

    No full text
    Every year, more than 200 million surgeries are performed around the world, and recent statistics show that adverse event rates for surgical pathologies remain unacceptably high, despite several national and global patient safety initiatives over the last decade. Patient safety is diverse and highly complicated in nature, with several critical components. Although concern for patient safety is fundamental in health care practice, its transition into knowledge is comparatively recent, and hence patient safety may be deemed a "new" field. Current surgical safety guidelines and checklists are generic and not adapted to specific patient concerns and risk factors in surgical subspecialties. All surgical practitioners and health care organizations must therefore become better aware of the fundamental context of patient safety, actively participate in endeavors to integrate patient safety measures in daily practice, and foster a patient safety culture. The purpose of this review article is to outline patient safety in surgical techniques that should be adopted and implemented
    corecore