109 research outputs found

    Origin and Ubiquity of Short-Period Earth-like Planets: Evidence for the Sequential-Accretion Theory of Planet Formation

    Full text link
    The formation of gas giant planets is assumed to be preceded by the emergence of solid cores in the conventional sequential-accretion paradigm. This hypothesis implies that the presence of earth-like planets can be inferred from the detection of gas giants. A similar prediction cannot be made with the gravitational instability (hereafter GI) model which assumes that gas giants (hereafter giants) formed from the collapse of gas fragments analogous to their host stars. We propose an observational test for the determination of the dominant planet-formation channel. Based on the sequential-accretion (hereafter SA) model, we identify several potential avenues which may lead to the prolific formation of a population of close-in earth-mass (M⊕M_\oplus) planets (hereafter close-in earths) around stars with 1) short-period or 2) solitary eccentric giants and 3) systems which contain intermediate-period resonant giants. In contrast, these close-in earths are not expected to form in systems where giants originated rapidly through GI. As a specific example, we suggest that the SA processes led to the formation of the 7.5 M⊕M_\oplus planet around GJ 876 and predict that it may have an atmosphere and envelope rich in O2_2 and liquid water. Assessments of the ubiquity of these planets will lead to 1) the detection of the first habitable terrestrial planets, 2) the verification of the dominant mode of planet formation, 3) an estimate of the fraction of earth-harboring stars, and 4) modification of bio-marker signatures.Comment: 13 pages, 3 figures, Accepted for publication in ApJ

    Formation of black-hole X-ray binaries in globular clusters

    Full text link
    Inspired by the recent identification of the first candidate BH-WD X-ray binaries, where the compact accretors may be stellar-mass black hole candidates in extragalactic globular clusters, we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well known formation channels like binary exchange and physical collisions and propose that the only possibility to form BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. Indeed, we find that the most important mechanism to make a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is triple induced mass transfer via the Kozai mechanism. Even using the most optimistic estimates for the formation rates, we cannot match the observationally inferred production rates if black holes undergo significant evaporation from the cluster or form a completely detached subcluster of black holes. We estimate that at least 1% of all formed black holes, or presumably 10% of the black holes present in the core now, must be involved in interactions with the rest of the core stellar population.Comment: 10 pages, 2 figures, submitted to Ap

    Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

    Full text link
    We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschild's orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper (van de Ven, de Zeeuw & van den Bosch), we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric.Comment: 21 Pages, 14 (Colour) Figures, Companion paper is arXiv:0712.0309 Accepted to MNRAS. Full resolution version at http://www.strw.leidenuniv.nl/~bosch/papers/RvdBosch_triaxmethod.pd

    Casimir Force on a Micrometer Sphere in a Dip: Proposal of an Experiment

    Full text link
    The attractive Casimir force acting on a micrometer-sphere suspended in a spherical dip, close to the wall, is discussed. This setup is in principle directly accessible to experiment. The sphere and the substrate are assumed to be made of the same perfectly conducting material.Comment: 11 pages, 1 figure; to appear in J. Phys. A: Math. Ge

    Quasiclassical double photoionization from the 2^{1,3}S excited states of helium including shakeoff

    Full text link
    We account for the different symmetries of the 2^{1,3}S helium excited states in a quasiclassical description of the knockout mechanism augmented by a quantum shakeoff contribution. We are thus able to formulate the separate contribution of the knockout and shakeoff mechanisms for double photoionization for any excess energy from the 2^{1,3}S states. Photoionization ratios and singly differential cross sections calculated for the 2^{1,3}S excited states of helium are found to be in very good agreement with recent theoretical results.Comment: 9 pages, 5 figure

    Evolution of stellar collision products in open clusters. I. Blue stragglers in N-body models of M67

    Full text link
    Stellar collisions are an important formation channel for blue straggler stars in globular and old open clusters. Hydrodynamical simulations have shown that the remnants of such collisions are out of thermal equilibrium, are not strongly mixed and can rotate very rapidly. Detailed evolution models of collision products are needed to interpret observed blue straggler populations and to use them to probe the dynamical history of a star cluster. We expand on previous studies by presenting an efficient procedure to import the results of detailed collision simulations into a fully implicit stellar evolution code. Our code is able to evolve stellar collision products in a fairly robust manner and allows for a systematic study of their evolution. Using our code we have constructed detailed models of the collisional blue stragglers produced in the NN-body simulation of M67 performed by Hurley \emph{et al.} in 2005. We assume the collisions are head-on and thus ignore the effects of rotation in this paper. Our detailed models are more luminous than normal stars of the same mass and in the same stage of evolution, but cooler than homogeneously mixed versions of the collision products. The increased luminosity and inefficient mixing decrease the remaining main-sequence lifetimes of the collision products, which are much shorter than predicted by the simple prescription commonly used in NN-body simulations.Comment: To be published in A&

    Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA

    Get PDF
    Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    • …
    corecore