252 research outputs found

    Quantifying Isoniazid Levels in Small Hair Samples: A Novel Method for Assessing Adherence during the Treatment of Latent and Active Tuberculosis.

    Get PDF
    BackgroundTuberculosis (TB) is the leading cause of death from an infectious pathogen worldwide and the most prevalent opportunistic infection in people living with HIV. Isoniazid preventive therapy (IPT) reduces the incidence of active TB and reduces morbidity and mortality in HIV-infected patients independently of antiretroviral therapy. However, treatment of latent or active TB is lengthy and inter-patient variability in pharmacokinetics and adherence common. Current methods of assessing adherence to TB treatment using drug levels in plasma or urine assess short-term exposure and pose logistical challenges. Drug concentrations in hair assess long-term exposure and have demonstrated pharmacodynamic relevance in HIV.MethodsA large hair sample from a patient with active TB was obtained for assay development. Methods to pulverize hair and extract isoniazid were optimized and then the drug detected by liquid chromatography/ tandem mass spectrometry (LC/MS-MS). The method was validated for specificity, accuracy, precision, recovery, linearity and stability to establish the assay's suitability for therapeutic drug monitoring (TDM). Hair samples from patients on directly-observe isoniazid-based latent or active TB therapy from the San Francisco Department of Public Health TB clinic were then tested.ResultsOur LC/MS-MS-based assay detected isoniazid in quantities as low as 0.02ng/mg using 10-25 strands hair. Concentrations in spiked samples demonstrated linearity from 0.05-50ng/mg. Assay precision and accuracy for spiked quality-control samples were high, with an overall recovery rate of 79.5%. In 18 patients with latent or active TB on treatment, isoniazid was detected across a wide linear dynamic range.ConclusionsAn LC-MS/MS-based assay to quantify isoniazid levels in hair with performance characteristics suitable for TDM was developed and validated. Hair concentrations of isoniazid assess long-term exposure and may be useful for monitoring adherence to latent or active TB treatment in the setting of HIV

    A Data-Driven, Non-Linear, Parameterized Reduced Order Model of Metal 3D Printing

    Full text link
    Directed energy deposition (DED) is a promising metal additive manufacturing technology capable of 3D printing metal parts with complex geometries at lower cost compared to traditional manufacturing. The technology is most effective when process parameters like laser scan speed and power are optimized for a particular geometry and alloy. To accelerate optimization, we apply a data-driven, parameterized, non-linear reduced-order model (ROM) called Gaussian Process Latent Space Dynamics Identification (GPLaSDI) to physics-based DED simulation data. With an appropriate choice of hyperparameters, GPLaSDI is an effective ROM for this application, with a worst-case error of about 8% and a speed-up of about 1,000,000x with respect to the corresponding physics-based data

    Development of a Maxwell X-57 High Lift Motor Reference Design

    Get PDF
    NASA's all-electric X-57 airplane will utilize 14 electric motors, of which 12 are exclusively for lift augmentation during takeoff and landing. This report covers the design and development process taken to create an open reference model representative of the 12 lift augmenting motors. A combined worst case scenario was used as the design point, which represents the simultaneously occurring worst case aspects of thermal, static stress, electromagnetic, and rotor dynamic conditions. This work also highlights the tightly coupled nature of aerospace electric motor design, requiring constant iteration between all disciplines involved. Further adding to the uniqueness is the cooling method, which is limited to nacelle skin forced convection cooling only, no internal air flow is permitted. The stator outer diameter limit of 156.45 mm greatly impacts the degree of coupling between the electromagnetic design with the thermal analysis. The permanent magnet synchronous motor developed here operates between 385 V and 538 V, at a peak current of 50 A. Detailed electromagnetic, thermal, static load, and rotordynamic analysis was completed for this electric motor; all of which are required for a full design. The rotordynamic analysis took into consideration the motor housing which is designed specifically for this motor. The final electric motor has a mass of 2.34 kg, produces 24.1 Nm of torque with a specific power of 5.56 kW/kg, and has an efficiency of 96.61% at the combined worst case design point

    How to Report and Benchmark Emerging Field-Effect Transistors

    Full text link
    Emerging low-dimensional nanomaterials have been studied for decades in device applications as field-effect transistors (FETs). However, properly reporting and comparing device performance has been challenging due to the involvement and interlinking of multiple device parameters. More importantly, the interdisciplinarity of this research community results in a lack of consistent reporting and benchmarking guidelines. Here we report a consensus among the authors regarding guidelines for reporting and benchmarking important FET parameters and performance metrics. We provide an example of this reporting and benchmarking process for a two-dimensional (2D) semiconductor FET. Our consensus will help promote an improved approach for assessing device performance in emerging FETs, thus aiding the field to progress more consistently and meaningfully.Comment: 15 pages, 3 figures, Under review at Nature Electronic

    Retrograde Interference in Perceptual Learning of a Peripheral Hyperacuity Task

    Get PDF
    Consolidation, a process that stabilizes memory trace after initial acquisition, has been studied for over a century. A number of studies have shown that a skill or memory must be consolidated after acquisition so that it becomes resistant to interference from new information. Previous research found that training on a peripheral 3-dot hyperacuity task could retrogradely interfere with earlier training on the same task but with a mirrored stimulus configuration. However, a recent study failed to replicate this finding. Here we address the controversy by replicating both patterns of results, however, under different experimental settings. We find that retrograde interference occurs when eye-movements are tightly controlled, using a gaze-contingent display, where the peripheral stimuli were only presented when subjects maintained fixation. On the other hand, no retrograde interference was found in a group of subjects who performed the task without this fixation control. Our results provide a plausible explanation of why divergent results were found for retrograde interference in perceptual learning on the 3-dot hyperacuity task and confirm that retrograde interference can occur in this type of low-level perceptual learning. Furthermore, our results demonstrate the importance of eye-movement controls in studies of perceptual learning in the peripheral visual field

    Eliminating a Region of Respiratory Syncytial Virus Attachment Protein Allows Induction of Protective Immunity without Vaccine-enhanced Lung Eosinophilia

    Get PDF
    In a murine model of respiratory syncytial virus disease, prior sensitization to the attachment glycoprotein (G) leads to pulmonary eosinophilia and enhanced illness. Three different approaches were taken to dissect the region of G responsible for enhanced disease and protection against challenge. First, mutant viruses, containing frameshifts that altered the COOH terminus of the G protein, were used to challenge mice sensitized by scarification with recombinant vaccinia virus (rVV) expressing wild-type G. Second, cDNA expressing these mutated G proteins were expressed by rVV and used to vaccinate mice before challenge with wild-type respiratory syncytial virus (RSV). These studies identified residues 193–205 to be responsible for G-induced weight loss and lung eosinophilia and showed that this region was not was not necessary for induction of protective immunity. Third, mice were sensitized using an rVV that expressed only amino acids 124–203 of the G protein. Upon RSV challenge, mice sensitized with this rVV developed enhanced weight loss and eosinophilia. This is the first time that a region within RSV (amino acids 193–203) has been shown to be responsible for induction of lung eosinophilia and disease enhancement. Moreover, we now show that it is possible to induce protective immunity with an altered G protein without inducing a pathological response

    Patrolling on Dynamic Ring Networks

    Get PDF
    We study the problem of patrolling the nodes of a network collaboratively by a team of mobile agents, such that each node of the network is visited by at least one agent once in every I(n)I(n) time units, with the objective of minimizing the idle time I(n)I(n). While patrolling has been studied previously for static networks, we investigate the problem on dynamic networks with a fixed set of nodes, but dynamic edges. In particular, we consider 1-interval-connected ring networks and provide various patrolling algorithms for such networks, for k=2k=2 or k>2k>2 agents. We also show almost matching lower bounds that hold even for the best starting configurations. Thus, our algorithms achieve close to optimal idle time. Further, we show a clear separation in terms of idle time, for agents that have prior knowledge of the dynamic networks compared to agents that do not have such knowledge. This paper provides the first known results for collaborative patrolling on dynamic graphs

    Payload Hardware and Experimental Protocol for Testing the Effect of Space Microgravity on the Resistance to Gentamicin of Stationary-Phase Uropathogenic Escherichia Coli and Its Sigma (sup S)-Deficient Mutant

    Get PDF
    Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG) stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG has been shown to differ from MG, we report here preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) on a free flying nanosatellite in low Earth orbit. Within EcAMSats payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes due to cellular metabolism accurately reflect E. coli viability changes: measuring AB absorbance onboard EcAMSat will enable telemetry of spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its delta rpoS strain to Gm. Space MG studies using EcAMSat should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity. Further, if sigma (sup s) plays the same role in space MG as in LSMMG and Earth gravity, EcAMSat results would facilitate utilizing our previously developed terrestrial UTI countermeasures in astronauts
    • …
    corecore