1,038 research outputs found

    Covering Dimension of C*-Algebras and 2-Coloured Classification

    Get PDF
    Research partially supported by EPSRC (grant no. I019227/1-2), by NSF (grant no. DMS-1201385), by JSPS (the Grant-in-Aid for Research Activity Start-up 25887031), by NSERC (PDF, held by AT), by an Alexander von Humboldt foundation fellowship (held by SW) and by the DFG (SFB 878).Postprin

    CheapStat: An Open-Source, “Do-It-Yourself” Potentiostat for Analytical and Educational Applications

    Get PDF
    Although potentiostats are the foundation of modern electrochemical research, they have seen relatively little application in resource poor settings, such as undergraduate laboratory courses and the developing world. One reason for the low penetration of potentiostats is their cost, as even the least expensive commercially available laboratory potentiostats sell for more than one thousand dollars. An inexpensive electrochemical workstation could thus prove useful in educational labs, and increase access to electrochemistry-based analytical techniques for food, drug and environmental monitoring. With these motivations in mind, we describe here the CheapStat, an inexpensive (<$80), open-source (software and hardware), hand-held potentiostat that can be constructed by anyone who is proficient at assembling circuits. This device supports a number of potential waveforms necessary to perform cyclic, square wave, linear sweep and anodic stripping voltammetry. As we demonstrate, it is suitable for a wide range of applications ranging from food- and drug-quality testing to environmental monitoring, rapid DNA detection, and educational exercises. The device's schematics, parts lists, circuit board layout files, sample experiments, and detailed assembly instructions are available in the supporting information and are released under an open hardware license

    Dynamics of a DNA mismatch site held in confinement discriminate epigenetic modifications of cytosine

    Get PDF
    The identification and discrimination of four epigenetic modifications to cytosine in the proposed active demethylation cycle is demonstrated at the single-molecule level, without the need for chemical pretreatment or labeling. The wild-type protein nanopore α-hemolysin is used to capture individual DNA duplexes containing a single cytosine–cytosine mismatch. The mismatch is held at the latch constriction of α-hemolysin, which is used to monitor the kinetics of base-flipping at the mismatch site. Base-flipping and the subsequent interactions between the DNA and the protein are dramatically altered when one of the cytosine bases is replaced with methyl-, hydroxymethyl-, formyl-, or carboxylcytosine. As well as providing a route to single-molecule analysis of important epigenetic markers in DNA, our results provide important insights into how the introduction of biologically relevant, but poorly understood, modifications to cytosine affect the local conformational dynamics of a DNA duplex in a confined environment

    Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA

    Get PDF
    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12–35°C) and KCl concentration (0.15–1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∌8 kJ mol−1 decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∌2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes

    A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    Get PDF
    SummaryCircadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake

    Period and chemical evolution of SC stars

    Full text link
    The SC and CS stars are thermal-pulsing AGB stars with C/O ratio close to unity. Within this small group, the Mira variable BH Cru recently evolved from spectral type SC (showing ZrO bands) to CS (showing weak C2). Wavelet analysis shows that the spectral evolution was accompanied by a dramatic period increase, from 420 to 540 days, indicating an expanding radius. The pulsation amplitude also increased. Old photographic plates are used to establish that the period before 1940 was around 490 days. Chemical models indicate that the spectral changes were caused by a decrease in stellar temperature, related to the increasing radius. There is no evidence for a change in C/O ratio. The evolution in BH Cru is unlikely to be related to an on-going thermal pulse. Periods of the other SC and CS stars, including nine new periods, are determined. A second SC star, LX Cyg, also shows evidence for a large increase in period, and one further star shows a period inconsistent with a previous determination. Mira periods may be intrinsically unstable for C/O ~ 1; possibly because of a feedback between the molecular opacities, pulsation amplitude, and period. LRS spectra of 6 SC stars suggest a feature at wavelength > 15 micron, which resembles one recently attributed to the iron-sulfide troilite. Chemical models predict a large abundance of FeS in SC stars, in agreement with the proposed association.Comment: 14 pages, 20 figures. MNRAS, 2004, accepted for publication. Janet Mattei, one of the authors, died on 22 March, 2004. This paper is dedicated to her memor
    • 

    corecore