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Abstract

The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a

sensing zone for individual abasic sites (and furan analogues) in double-stranded DNA

(dsDNA). The presence of an abasic site or furan within a DNA duplex,

electrophoretically captured in the α-HL vestibule and positioned at the latch region,

can be detected based on the current blockage prior to duplex unzipping. Variations

in blockage current were investigated as a function of temperature (12 – 35 oC) and

KCl concentration (0.15 – 1.0 M) to understand the origin of the current signature and

to optimize conditions for identifying the base modification.  In 1 M KCl solution,

substitution of a furan for a cytosine base in the latch region results in an ~8 kJ mol-1

decrease in the activation energy for ion transport through the protein pore. This

corresponds to a readily measured ~2 pA increase in current at room temperature.

Optimal resolution for detecting the presence of a furan in the latch region is achieved

at lower KCl concentrations, where the noise in the measured blockage current is

significantly lower. The noise associated with the blockage current also depends on the

stability of the duplex (as measured from the melting temperature), where a greater

noise in the measured blockage current is observed for less stable duplexes.



2

Introduction

The wild-type pore-forming toxin α-hemolysin (α-HL) has been studied extensively

over the past decade as a platform for ion-channel recordings of single-stranded DNA (ssDNA)

(1-7). By applying a potential difference across an α-HL pore that is embedded into a lipid

membrane, DNA can be driven electrophoretically from one side of the pore to the other. The

current is recorded as a function of time, and translocations of the individual DNA strands are

observed as ‘events’ in which the current momentarily decreases (8, 9). The extent of this

current change is dependent on the sequence of the DNA near the tightest constriction of the

protein channel, which is comparable to the diameter of ssDNA.

While ssDNA can translocate through α-HL, double-stranded DNA (dsDNA)

does not because its diameter (~ 2.0 nm) is larger than the narrowest constriction of the

pore, ~1.4 nm (10). However, it is possible to capture dsDNA in the α-HL vestibule,

and this technique has been used to interrogate dsDNA hairpins within the vestibule of

α-HL to reveal structural composition (11, 12) to study escape kinetics (13), and to probe

the electrical potential distribution within the α-HL protein pore (14). With an

appropriate applied voltage (120 mV), dsDNA will ‘unzip’ (denature) into its

constituent components (11, 15-19) (Fig 1A). In a typical experiment, dsDNA with an

additional single-stranded poly-T tail is driven into α-HL from the cis (vestibule) side

of the channel. The duplex is driven down to the 1.4 nm constriction (15) that separates

the vestibule from the β-barrel, through which the duplex cannot pass. The

electrophoretic driving force causes the double-stranded section to unzip into its

constituent components.

The time taken for the unzipping to occur, which is on the order of milliseconds,

is dependent on the length and composition of the DNA (19, 20) and correlates with the
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stability of the duplex (15, 19, 20). This feature has been used previously to identify the

presence of damage sites in DNA that destabilize the duplex (15, 21).

The decrease in current while dsDNA is captured in the pore, relative to the

current measured through an open channel, is a result of the blocking contributions from

both the single-stranded and double-stranded sections of DNA. While the majority of

the current is blocked by the poly-T tail that resides in the β-barrel during unzipping,

there is also a contribution to the current blockage by the double-stranded section that

resides in the vestibule. In our previous work, we have shown that removing a single

base in the duplex section (by replacing it with a furan group or abasic site) can result

in an increase in measured current through the pore. The precise change in current is

dependent on the position of the missing base in the sequence relative to the latch

constriction of the α-HL protein pore (Fig 1C).

In this article, we demonstrate that the difference in observed current can be

attributed to the differences in activation energy for transport of the electrolyte

(K+ and Cl-) through the latch region of HL during dsDNA residence inside the pore.

Through temperature- and KCl-dependent measurements, we show how identifying a

furan group at the latch can be optimized at lower temperatures and lower KCl

concentration. In particular, the noise associated with the current measured during

unzipping increases with increasing KCl concentration.  Finally, we demonstrate for the

first time that the noise associated with the current measured during unzipping is

dependent on the stability (as measured from the melting temperature) of the DNA

duplex. This finding we ascribe to “breathing” of the duplex within the vestibule. While

previous efforts at nanopore measurements of DNA have focused on translocation of

ssDNA, (1-7) the effective exploitation of the latch sensing zone offers exciting
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possibilities for characterizing and sequencing the more biologically relevant dsDNA

along with its modifications.

Fig. 1. (A) The unzipping of dsDNA in the α-HL nanopore. DNA denatures or ‘unzips’

into its constituent components when a voltage of 120 mV is applied across the pore.

(B) Upon capture, the duplex section is driven down to the central 1.4 nm constriction

and pauses momentarily before unzipping. (C) Replacing a cytosine base by a furan
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group in proximity to the latch constriction results in an increase in measured current

prior to unzipping. The α-HL structure was taken from pdb 7AHL, and the DNA

structure is shown on a 1:1 scale with α-HL (10).

Results & Discussion

The DNA sequence chosen for study was a portion of the KRAS gene, 5’-(T)24-

TGGAGCTGCTGGCGTAG, with the poly-T tail added to assist in threading through

the nanopore. This sequence is of interest because damage that gives rise to point

mutations within this gene can lead to uncontrolled cell growth and human carcinoma.

(22) The 41-mer sequence of interest was hybridized to a complementary 17-mer to

form a 17-base pair duplex section. The capture and unzipping of these DNA duplexes

within α-HL was continuously monitored, and the measured current of each event was

used to construct histograms of the blocking current and noise.

When a single base was removed from the DNA sequence at the latch region and

replaced with a furan (Fig. 1C), the measured current through the pore increases relative

to the fully complementary sequence (Fig. 2). The measured current difference between

the complementary duplex and the duplex containing a furan at the latch region   was

~2 pA.
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Fig 2. Resolving the presence of a single furan , an abasic mimic, in a DNA duplex.

Current histograms and representative current time traces illustrating the observed

unzipping event currents for (A, red line) duplex containing a furan group at position

9F,   (B, blue line), the reference duplex (containing no modifications), and (C) both the

furan-containing and reference duplex. (D) The approximate position of the furan group,

relative to the latch region in α-HL is shown for the reference and furan-containing

duplexes.
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Defining the Extent of the Latch Sensing Zone

In an earlier publication, we demonstrated that moving the position of the furan

altered the observed current relative to the reference (21). These preliminary

experiments were performed in a buffer containing 150 mM KCl, chosen because the

initial studies focused on monitoring the uracil-DNA glycosylase (UDG) catalyzed

conversion of a uracil base to an abasic site, and the UDG enzyme is catalytically

inactive at higher KCl concentrations. (19) Such a low KCl concentration is unusual in

nanopore measurements employing α-HL, because there the rate of capture of DNA is

significantly reduced by repulsive electrostatic interactions between negative amino

acid residues at the vestibule opening and the phosphate backbone of DNA (9, 23).

These interactions are much more effectively screened at higher KCl concentrations.

We studied the difference in blocking current, ΔI, as a function of sequence

position, between a DNA duplex modified with a single-furan site and an unmodified

dsDNA reference containing standard Watson-Crick base pairs (Fig. 3) The position of

the furan modification in the DNA was varied between 6 and 13 base pairs from the 3’

end of the 17-mer (i.e. 6 to 13 base pairs cis to the central constriction). The position of

the furan site within the latch region of α-HL before unzipping determines the blocking

current, defining a sensing zone that spans approximately 6 base-pairs (~2 nm). At the

center of this sensing zone, the differences in blocking currents between the furan-

containing and reference duplex reaches a maximum of just over 2 pA, corresponding

to a readily detectable 1.6% change when the unzipping event current is normalized

relative to the open channel current (ΔI/Io). On either side of this maximum, the current

difference tends toward zero over 2- 3 base pairs.

ΔI values recorded in 1 M KCl (Fig. 3) are similar to values previously measured in 0.15

M KCl (21). This is an important finding because it demonstrates the general
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applicability of the latch sensing zone to interrogate DNA structure at electrolyte

concentrations commonly used for ion channel recordings.

Assuming the distance between base pairs remains ~0.34 nm in the vestibule under

an electric force, (24) this range of base pairs corresponds to a distance of between 2.0

and 4.4 nm, placing the furan group at a narrowing of the protein vestibule during

unzipping, as shown in Fig 1B. This latch site, as first described in detail by Song et al.,

is approximately 2.6 nm in diameter (10), comparable to the diameter of dsDNA (2.0

nm).

Structural changes in DNA hairpins have previously been identified using the

vestibule of α-HL by Vercoutere and co-workers (11). In one experiment, they observed

a 2 pA decrease in measured current when a dsDNA hairpin is altered only by adding

an additional T to the loop section. This loop section is situated at distance equivalent

to 6-7 base pairs from the central constriction of α-HL, placing it at the edge of the latch

constriction during vestibule residence. Their observation is in agreement with our

results, where placing the additional T in the latch region of α-HL contributes to the

decrease in measured current, much like the presence of a missing base (furan group) in

our experiments results in a current increase.
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Fig. 3. Mapping the resolution of the latch sensing zone within α-HL in a 1 M KCl

solution. The current was monitored for a series of duplexes in which the position of the

furan group was moved systematically through the sequence while maintaining a

guanine opposite the furan. The differences in the blocking current ΔI for the furan-

containing duplex relative to the (fully complementary) reference duplex, normalized to

the open channel current, I0, are plotted vs. the position of the furan. The approximate

position of the furan substitution relative to the α-HL vestibule is shown. Error bars are

given as the standard error of the mean. The α-HL structure was taken from pdb 7AHL

(10), and the DNA structure is shown on a 1:1 scale with α-HL.
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Effect of Temperature

Temperature-dependent measurements were performed in order to better

understand the origin of the increase in current when a furan was placed into the

proximity of the latch region.  As the temperature was increased from 12 to 35 oC, the

currents of both the open channel and the unzipping events increased, in accordance

with the expected increase in ion mobilities (23). Over this temperature range, the

tertiary structure of the protein is believed to be stable (25). However, the current

difference between the duplex containing a furan at the latch (position 9F) and a duplex

with a furan situated outside the latch (position 13F) becomes smaller with increasing

temperature as shown in Fig. 4.
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Fig. 4. The effect of temperature on the observed current during unzipping of two

duplexes, one of which has a furan group situated at the latch region of α-HL during

unzipping (position 9F), and one that does not (position 13F). (A-E) Representative
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temperature-dependent current histograms illustrating the change in the current (and

current difference) measured during unzipping. (F) The change in the current during

unzipping as a function of temperature for position 9F (black squares) and position 13F

(red circles); and change in current for the open channel (inset). (G) I-t traces as a

function of temperature. Events < 2 ms in duration are attributed to excess DNA and/or

collision of the DNA with the protein surface.

The origin of the dependence of the current on the position of the furan was explored by

measuring the activation energy for electrolyte transport through the nanopore. The

activation energy reflects the resistance to electrolyte transport when dsDNA is

introduced into the vestibule, and was determined by measuring I as a function of

temperature and analysing the data using the linearized version of the Arrhenius

equation:

   C
RT

E
I A lnln  (1)

where R is the gas constant, T is the temperature and C is the pre-exponential factor.

Arrhenius plots for the open channel, and the two duplexes with the furan group

situated inside and outside of the latch region (positions 9F and 13F, respectively), were

constructed from the data in Fig. 4 and are shown in Fig. 5. The calculated activation

energy for the open channel measured at an applied potential of 120 mV was 17.1 ± 0.6

kJ mol-1. This is comparable to the activation energy for diffusion of KCl in bulk

solution (17.7 kJ mol-1) (26).

A significant increase in the activation energy for electrolyte transport (relative

to the open channel) was observed when dsDNA was situated inside the pore (i.e.,

during unzipping). This reflects a decrease in the mobility of ions within the pore,
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caused by the presence of DNA that occupies a significant volume of the vestibule,

and/or specific interactions of the ions with the DNA duplex. The activation energy

was also highly dependent on the position of the missing base within the sequence.

When the furan group was situated inside the latch region of α-HL, the activation

energy at (120 mV) was significantly lower (19 ± 1 kJ mol-1) than when it was

situated outside the latch region (27 ± 1 kJ mol-1). The activation energy under the

same conditions for the perfectly-complementary reference duplex (containing no

furan sites) was found to be identical (29 ± 2 kJ mol-1) to the duplex with the furan

positioned outside the latch region (Fig SI-6). We speculate that the decrease in

activation energy reflects less steric hindrance at the constriction site, where

removal of a base opens a passage through which the ions can move more freely.

Our data predicts that at higher temperatures (>35 °C) the difference in the

measured currents for the two duplexes is inverted. That is, a duplex with a furan at

position 9F would become more blocking than a duplex with a furan position 13F.

While this effect is interesting, measurements beyond 35 °C are challenging

because the decreasing residence time of the DNA at higher temperatures, due to

the exponential increase in the unzipping rate, results in a much poorer signal to

noise ratio and prohibits reliable determination of the blockage currents.
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Fig. 5. Determining the activation energy of electrolyte transport from an Arrhenius

plot. The change in current as a function of the reciprocal temperature during unzipping

of DNA duplex containing a furan at position 9F (black squares), position 13F (red

circles), and for the open channel current (inset). Details of the sequences studied are

given in Fig. 3.

It is also clear that measurements at lower temperatures have a distinct advantage in

resolving the presence of a missing base in the latch region. This is because the  current

difference between a furan-containing duplex and the reference was greatest (Fig. 4F)

and the noise is lower (4G). However, this advantage is balanced against the increased

length of the unzipping event time, which increases exponentially as the temperature

decreases (Fig 4G & SI-7).

Effect of KCl Concentration

A series of unzipping experiments using duplexes containing a furan positioned

in the latch (position 9F) and distal to the latch (position 13F) of α-HL, as shown in Fig.

3, were conducted over a range of KCl concentrations between 0.15 and 1 M to further

optimize detection of abasic/furan sites. The objective of these experiments was to

identify how the difference in blocking current between two duplexes varies as a

function of KCl concentration.

It is known that the current of an open α-HL channel increases as a function of

electrolyte concentration (21). While the effect of KCl concentration on ssDNA

translocation has been studied previously (23), the dependence of blockage current prior

to dsDNA unzipping on electrolyte concentration has not been reported.
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The measured current during unzipping for both duplexes increases with an

increase in KCl concentration up to about ~0.3 M, at which point the current remains

fairly constant (Fig. 6). Below 0.15 M (outside the measurable range) the current is

expected to decrease towards a limiting value determined by the counterions associated

with the fixed charges on the wall of the protein and/or DNA duplex. The levelling-off

in the observed current occurs at a similar concentration to that previously observed for

ssDNA translocation (23). In this concentration region, the number of current-carrying

ions inside the pore during DNA unzipping is only weakly dependent on the external

KCl concentration between 0.3 and 1 M. We speculate that this due to exclusion of

anions from the pore by the negative charge of the sugar-phosphate backbone. This is

in contrast to the behavior of the open channel current, which increased linearly with

increasing KCl concentration over the range studied (inset of Fig. 6).

Further evidence for a constant number of ions in the α-HL channel above 0.3 M

KCl may be inferred from analyzing the time τ taken to unzip the DNA duplex inside

the α-HL channel. We find τ also remains constant as a function of KCl concentration

between 0.3 and 1 M (Fig. SI-5). If the KCl concentration inside the protein pore

increased with increasing bulk KCl concentration, and assuming that the stability of

DNA as a function of KCl concentration in the confined geometry of α-HL is similar to

that in bulk solution, then an increase in unzipping times with increasing KCl

concentration is to be expected. This is because the unzipping time is related to the

stability of the DNA duplex, and the latter increases as a function of KCl concentration

due to more effective screening of adjacent negatively charged phosphate groups (27).
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Fig. 6. The effect of KCl concentration on the blocked channel current during dsDNA

unzipping. Inset: the open channel current increases linearly as a function of KCl

concentration. Currents were recorded at 120 mV in a 10 mM phosphate (pH 7.5)

solution containing 0.15 – 1 M KCl. Current histograms for each KCl concentration are

shown in Fig. SI-3.
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Effect of Electrolyte Concentration on Current Noise

A single blockage current event has an associated noise. For example, if a

blockage current is reported as -21.6 ± 0.8 pA, then the noise associated with that one

event is 0.8 pA.  The noise from many events can be used to construct a histogram of

blocking current noise (Figs. 7A and 7B). In general, we find that the noise distribution

for unzipping events is skewed-right toward higher noise. The average noise associated

with the unzipping of a duplex can be estimated from the median of this distribution.

The noise associated with the unzipping was examined as a function of KCl

concentration (Fig. SI-8) for the two duplexes with a furan situated outside of the latch

region during unzipping (position 13F) and inside the latch region (position 9F). The

noise associated with open channel events (i.e., the events between DNA capture) was

also measured (Fig. 7; inset). The event rate for ssDNA is greatest at high KCl

concentrations (23). However, this is not necessarily the optimum electrolyte

concentration in which unzipping experiments should be performed. This is because the

median of the noise was found to increase with the increasing KCl concentration. (Fig.

7).

At 150 mM KCl, the median of the blockage event noise (for DNA with a furan

at position 13F) is  1.23  ± 0.07 pA. This increases to  1.9 ± 0.1 pA at 1 M KCl. The

open channel current event noise in this particular experiment increases to 2.25 ± 0.09

pA.  While the results presented earlier show that the latch region is capable of resolving

the presence of a furan at 1 M KCl, it is clear that optimal resolution is obtained in KCl

concentrations at or lower than 0.5 M, where the noise in the measured current is lower.

Clearly, both KCl concentration and temperature are important to consider when

choosing the measurement conditions for identifying abasic sites in DNA. Optimal

conditions are therefore anticipated at low electrolyte concentration and low
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temperature, where current-peak separation is at a maximum and the noise in the current

is at a minimum. At high electrolyte concentration and high temperatures, resolving the

presence of a furan would be extremely challenging.

Fig. 7. Representative histograms of the noise in the measured unzipping currents for a

duplex with a furan at (A) position 9F and (B) position 13F in 0.75 M KCl. (C) The

open-channel noise distribution (the noise of the current measured between unzipping

events). The dashed red lines denote the median of the noise distribution. (D) The effect

of KCl concentration on the median of the noise for a furan at position 9F (black lines),

position 13F (red lines) and the open channel current events (inset). Histograms of the

event noise at each KCl concentration are shown in Fig SI-8.

The noise in the measured current during unzipping also appears to be dependent

on the stability of the duplex. In Fig. 7D, the duplex with the furan at position 9F (black

line) exhibits a consistently higher noise than the duplex with the furan at position 13F

(red line) between 0.15 and 1 M KCl. The melting points of these two duplexes are 60.7
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± 0.6 °C and 64.6 ± 0.6 °C, respectively, suggesting that the noise level in the unzipping

event current is higher for less stable duplexes.

To verify this observation, the melting temperatures of all the duplexes used in

the mapping studies presented earlier were measured, and the noise of the unzipping

events for each were analyzed (Fig. SI-9). Fig. 8 shows the change in the median of the

unzipping event noise normalized with the respect to the median of the open channel

event noise, as a function of duplex stability.

Fig. 8. The effect of melting temperature on the noise of the unzipping event currents.

The median of the noise associated with each unzipping event current, normalized to

the noise of the open channel current increases as the stability of the duplex decreases.

A constant temperature of 25 °C was used for all nanopore measurements. Error bars on

the y-axis are the standard error of the median, and error bars on the x-axis are twice the

standard deviation of three averaged melting point experiments. Histograms of the noise

of the unzipping events for each duplex studied are given in Fig. SI-9.
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An increase in the noise of the unzipping events is observed as the duplexes

become less stable. DNA is a dynamic structure, and it is reasonable to assume that

during occupation of the α-HL channel, the DNA undergoes local conformational

changes. Such conformational changes are important in the concept of DNA “breathing”

that leads to the breaking of localised base-pairs and the formation of ssDNA regions

(DNA “bubbles”) that have a lifetime of ~ 100 µs (28-30). For less stable duplexes (as

measured by the melting temperature) these conformational changes are likely to be

larger and more frequent when the DNA is situated inside the α-HL channel prior to

unzipping. We speculate that these fluctuations in local conformation contributed to the

measured current noise.

Conclusions

We have demonstrated that the latch region of α-HL constitutes a sensing zone

that is capable of detecting a furan group in dsDNA over a range of 4-5 base pairs. The

presence of a furan group in the latch region during unzipping gave rise to an increase

in current relative to the unzipping of duplex that has a fully-complementary sequence.

The results presented here demonstrate that the detection of mutation-causing

abasic sites in the KRAS sequence using nanopore unzipping can be optimized by using

low electrolyte concentration (150 mM) and low temperature (12 °C) conditions where

the noise associated with individual events is at a minimum and the current signature

resolution between an abasic site-containing duplex and the reference is at a maximum.

One potential route to further optimization is through reducing the DNA breathing effect

that leads to the noise in individual events. One potential route to decreasing DNA

breathing is through the use of a DNA probe constructed from an analogue such as

peptide nucleic acid (PNA), which forms a more stable structure (31). Clearly, the latch
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constriction of α-HL, which is specific to dsDNA, offers the potential to study and detect

site-specific changes in duplex structure of biological relevance, such as mutations and

damage to individual bases.
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Experimental Section

DNA Preparation and Purification Procedures

DNA was prepared from commercially available phosphoramidites (Glen

Research, Sterling, VA) by the DNA Core Facility at the University of Utah.

Afterwards, DNA oligomers were cleaved from the solid support and deprotected

following the manufacturer’s protocol, followed by purification using an ion-exchange

HPLC column running a linear gradient of B from 25% to 100% over 30 min while

monitoring UV absorbance at 260 nm (A = 20 mM NaPi, 1 M NaCl, pH 7 in 10%

CH3CN/90% ddH2O, B = 10% CH3CN/90% ddH2O, flow rate = 3 mL/min).

Chemicals and Materials for Nanopore Measurements

All buffer solutions used were prepared as 10 mM phosphate (pH 7.5), with a

KCl concentration as indicated.  WT α-HL was purchased from List Biological

Laboratories in the monomer form of lyophilized powder and dissolved in water at 1

mg/mL. 1,2-Diphytanoyl-sn-glycero-3-phospho-choline (DPhPC) was dissolved in

decane at 10 mg/mL and used to form the bilayer. The bilayer was supported by a glass

nanopore membrane (GNM), the fabrication of which has been described previously

(32). Glass nanopore membranes were modified with a 2% (v/v) (3-cyanopropyl)

dimethylchlorosilane in acetonitrile to create a moderately hydrophobic surface. The

DNA duplexes were annealed by mixing the 41-mer and 17-mer at a 1:2 mole ratio,

followed by heating in a 90 °C water bath for 5 min and then cooling to room

temperature over 3 h.
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Current-Time Recordings

Current-time (i-t) recordings were performed using the low noise Nanopatch

system (Electronic BioSciences, Inc., San Diego, CA), which is also capable of

temperature control to an accuracy of ± 0.5 ° C. Temperature control is achieved by a

thermo-electric peltier embedded underneath the solution reservoir (outside the

capillary), and measured by a K-Type thermocouple in contact with the solution. The

temperature was permitted to equilibrate for 5 minutes before measurement. The KCl

solution was used as the electrolyte to fill the solution reservoir and the GNM capillary.

A voltage was applied across the GNM between two Ag/AgCl electrodes placed inside

and outside of the capillary. As previously described, a lipid bilayer was deposited

across the GNM orifice as indicated by a resistance increase from ~10 MΩ (associated

with the open GNM) to ~100 GΩ. (32) A pressure of 60 to 80 mmHg was applied to the

inside of the GNM capillary using a syringe, allowing the lipid bilayer to be functional

for the protein channel reconstitution (32). Next, 0.2 µL of α-HL monomer solution at

1 mg/mL was added to the cis side of GNM (a volume of 350 µL). The duplex DNA

(15 µM) was added to the solution reservoir after protein reconstitution into the lipid

bilayer, which was indicated by a single jump in current by approximately 1 pA /mV at

25 ° C. A voltage of 120 mV was applied trans vs. cis, (Ag/AgCl electrode inside the

capillary vs Ag/AgCl electrode placed at external solution (cis negative).). The i-t traces

were filtered at 10 kHz and sampled at 50 kHz.

Data Collection

Based on previous reports, (19) I-t blockades that lasted longer than 2 ms were

identified as DNA unzipping events. Shorter events were attributed to translocation of

excess single-stranded DNA (ssDNA), and/or collision of the DNA with the protein
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surface. The current amplitude of each blockade was used to determine the identity of

duplex, as described in the main text. Events were extracted using QuB (version

1.5.0.31). Histograms of current, noise and unzipping durations were generated and

plotted using Origin Pro (version 9.0). Details of error treatment are given in the

supplementary information.

Supporting Information

Full DNA sequence details, representative current-time transients, additional current

and current-noise histograms, additional activation energy data, unzipping-time analysis

and error calculations.
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