16 research outputs found

    Glass corrosion in natural environments

    Get PDF
    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were carried out on these glasses in order to characterize their magnetic properties. Results of these studies are described

    Microstructure and magnetization of Y-Ba-Cu-O prepared by melt quenching, partial melting and doping

    Get PDF
    Y-Ba-Cu-O samples prepared by means of a variety of melt-based techniques exhibit high values for their magnetic properties compared with those of samples prepared by solid state sintering. These techniques include single-stage partial melting as well as melt quenching followed by a second heat treatment stage, and they have been applied to the stoichiometric 123 composition as well as to formulations containing excess yttrium or other dopants. The structure of these melt-based samples is highly aligned, and the magnetization readings exhibit large anisotropy. At 77 K and magnetic field intensities of about 2 kOe, diamagnetic susceptibilities as high as -14 x 10(exp -3) emu/g were obtained in the cases of melt-quenched samples and remanent magnetization values as high as 10 emu/g for samples prepared by partial melting

    Melt-processed bulk superconductors: Fabrication and characterization for power and space applications

    Get PDF
    Melt-process bulk superconducting materials based on variations on the base YBa2Cu3O(x) were produced in a variety of shapes and forms. Very high values of both zero-field and high-field magnetization were observed. These are useful for levitation and power applications. Magnetic measurements show that the effects of field direction and intensity, temperature and time are consistent with an aligned grain structure with multiple pinning sites and with models of thermally activated flux motion

    Differences in fundamental reaction mechanisms between high and low-LET in recent advancements and applications of ionizing radiation

    Get PDF
    International audienceRecent applications of high-LET radiation include boron neutron capture therapy. UV treatment of electron-irradiated UHMWPE impedes degradation caused by allyl radicals. Radiation synthesis of PVP nanogels above 55 1C leads to intra-molecular crosslinking. PCBs in contaminated sediments can be dechlorinated by reactions with hydrated electrons. a b s t r a c t Differences among the mechanisms of energy deposition by high-linear energy transfer (LET) radiation, consisting of neutrons, protons, alpha particles, and heavy ions on one hand, and low-LET radiation, exemplified by electron beam and gamma radiation on the other, are utilized in the selection of types of radiation used for specific applications. Thus, high-LET radiation is used for modification of carbon nanotubes, ion track grafting, and the synthesis of membranes and nanowires, as well as for characterization of materials by means of neutron scattering. Recent applications of low-LET irradiation include minimization of radiolytic degradation upon sterilization of ultra-high molecular weight polyethylene (UHMWPE), radiolytic synthesis of nanogels for drug delivery systems, grafting of polymers in the synthesis of adsorbents for uranium from seawater, and reductive remediation of PCBs

    Formation of hard hematite-cemented solids in steam generators : An analog of lithification of Fe-containing sedimentary rocks

    No full text
    The formation of hard hematite in steam generators with relatively high levels (5-10 μg/L) of dissolved oxygen at temperatures around 280-290°C and pressures around 6-8 MPa can serve as an analog for the formation of hard hematite in sedimentary processes. Furthermore, in steam generators, as well as in nature, hematite is an effective cementing agent, capable of incorporating as much as twice its own weight of other solids to form a hard composite material. Laboratory simulations showed ferrihydrite to be the likely starting material for the formation of hard, dense hematite at temperatures much lower than those required for sintering of anhydrous hematite. These laboratory simulations, performed at temperatures around 260°C and pressures of ∼500 MPa, resulted in the formation of hard hematite or hematite-based composite solids over periods of 3-5 h, compared with several months in steam generators and many years in nature. The amount of water present during the synthesis (10-15% of the weight of dry ferrihydrite) and the gradual removal of water proved to be key parameters in the formation of hard, dense hematite. The mechanism, studied by means of X-ray diffractometry, Mössbauer spectroscopy and infrared spectroscopy, appeared to involve build-up, then gradual condensation of OH bridges, leading to the conversion of ferrihydrite to hydrohematite with approximately 4-5% of residual water. The presence of other solids, such as copper and its oxides, alumina and silica, in large quantities, resulted in smaller grain size of the hydrohematite product but did not affect its mechanical properties. On the other hand, the use of hydrazine to provide a reducing environment produced goethite during the precursor synthesis stage and soft magnetite during the pressing stage. However, whenever hematite was produced, it could not be subsequently reduced to magnetite by hydrazine under the reaction conditions specified above. The mechanical properties as well as the spectroscopic characteristics of the product of pressing agreed with observations on sedimentary hematite-cemented rocks

    Silane coupling and mordanting as attachment techniques for pyridylazo and thiazolylazo ligands in the synthesis of adsorbents for uranium in seawater

    No full text
    Activated carbon adsorbents modified with azo compounds (4-(2-pyridylazo)resorcinol, 1-(2-pyridylazo)-2-naphthol, 4-(2-thiazolylazo)resorcinol), or with allyl and vinylbenzyl derivatives of 4-(2-thiazolylazo)resorcinol, were observed to be highly effective in removing uranium from seawater and providing high loadings. Adsorbents consisting of azo compounds attached to fiber fabrics were prepared using silane coupling to attach azo reagents to silica fibers or mordanting agents such as tannic acid or aluminum acetate to attach them to cellulose fibers. Loadings of 15–45 mg U g −1 adsorbent were obtained. Scanning electron microscopy/energy dispersive X-ray spectroscopy measurements confirmed the presence of high concentrations of uranium on the surface of the silica-based and cellulose-based fibers
    corecore