48 research outputs found

    Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    Get PDF
    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 x 10(19) m(-3), at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling, operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape

    D-shaped configurations in FTU for testing liquid lithium limiter: Preliminary studies and experiments

    Get PDF
    The feasibility of getting "D" shaped plasma configurations in FTU, with a possible X point close to the first wall, has been investigated with the aim of achieving an H-mode regime in this machine. This regime could allow both evaluating the thermal effects on the liquid lithium limiter due to the possible Edge Localized Modes and studying the L-H transition properties in low recycling conditions due to the presence of lithium.. An alternative design for the magnetic system in FTU has been also proposed, to realize an X-point inside the plasma chamber, close to the Liquid Lithium Limiter.Preliminary experiments with elongated configurations and limited ECRH additional heating power did not allowed approaching the L-H transition but they were used to develop a proper elongation control. This controller allowed guaranteeing the vertical stability in elongated configurations despite the reduced power available for the horizontal field coils in FTU. The elongation was stably keep over 1.2, while the lithium limiter was very close to the last close flux surface. Neither limiter damages nor plasma pollution were observed in these configurations.A possible alternative connection of the poloidal field coils in FTU is here proposed, with the aim of achieving a true X-point configuration with a magnetic single null well inside the plasma chamber and strike points on the lithium limiter. A preliminary assessment of this design allowed estimating the required power supply upgrade and showed its compatibility with the existing mechanical structure and cooling system, at least for plasmas with current up to 300 kA and flat-top duration up to 4s. Keywords: FTU, Liquid lithium limiter, L-H transition, X-point, Plasma elongatio

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity

    Conditions for Lower Hybrid Current Drive in ITER

    No full text
    To control the plasma current profile represents one of the most important problems of the research of nuclear fusion energy based on the tokamak concept, as in the plasma column the necessary conditions of stability and confinement should be satisfied. This problem can be solved by using the lower hybrid current drive (LHCD) effect, which was demonstrated to occur also at reactor grade high plasma densities provided that a proper method should be utilised, as assessed on FTU (Frascati Tokamak Upgrade). This method, based on theoretical predictions confirmed by experiment, produces relatively high electron temperature at the plasma periphery and scrape-off layer (SOL), consequently reducing the broadening of the spectrum launched by the antenna produced by parasitic wave physics of the edge, namely parametric instability (PI). The new results presented here show that, for kinetic profiles now foreseen for the SOL of ITER, PI is expected to hugely broaden the antenna spectrum and prevent any penetration in the core of the coupled LH power. However, considering the FTU method and assuming higher electron temperature at the edge (which would be however reasonable for ITER) the PI-produced spectral broadening would be mitigated, and enable the penetration of the coupled LH power in the main plasma. By successful LHCD effect, the control of the plasma current profile at normalised minor radius of about 0.8 would be possible, with much higher efficiency than that obtainable by other tools. A very useful reinforce of bootstrap current effects would be thus possible by LHCD in ITER

    Progress in LHCD: a tool for advanced regimes on ITER

    No full text
    The recent success in coupling lower hybrid (LH) waves in high performance plasmas at JET together with the first demonstration on FTU of the coupling capability of the new passive active multijunction launcher removed major concerns on the possibility of using LH on ITER. LH exhibits the highest experimental current drive (CD) efficiency at low plasma temperature thus making it the natural candidate for off-axis CD on ITER where current profile control will help in maintaining burning performance on a long-time scale. We review recent LH results: long internal transport barrier obtained in JET with current profile sustained and controlled by LH acting under real time feedback together with first LH control of flat q-profile in a hybrid regime with T-e similar to T-i. Minutes long fully non-inductive LH driven discharges on Tore Supra (TS). High CD efficiency with electron cyclotron in synergy with LH obtained in FTU and TS opening the possibility of interesting scenarii on ITER for MHD stabilization. Preliminary results of LH modelling for ITER are also reported. A brief overview of ITER LH system is reported together with some indication of new coming LH experiments, in particular KSTAR where CW klystrons at the foreseen ITER frequency of 5 GHz are being developed.

    Erratum: Current drive at plasma densities required for thermonuclear reactors (vol 1, pg 55, 2010)

    No full text
    Nature Communications 1:55 doi: 10.1038/ncomms1052 (2010); Published 10 Aug 2010; Updated 19 Sep 2013 In Fig. 3 of this Article, the colours of the blue and green curves were accidentally interchanged while the manuscript was being revised. In addition, the x axis labels on Fig. 4 should have read ‘Frequency (MHz)’. The correct versions of both figures appear below
    corecore