26,044 research outputs found

    Academic research on student engagement - lost formulae to inspiring students

    Get PDF
    Academic tutors take on a multitude of roles in their current positions at university and while teaching is expected, from most, it is often assumed that the tutor will apply appropriate pedagogical tools to convey knowledge to the students. This view is now being challenged as many students are being actively encouraged to voice their views of the teaching and learning experience, for the module and the university experience, through module evaluation forms and the national student survey. The results from these surveys and comments, left by students, on social networking sites reveal that there is a gulf from student expectations and the actual teaching delivery experienced. The pedagogical elixir appears to have been lost by our fatigued, multi-tasking, poorly resourced academics. This research was driven by a desire to reveal the true nature of an inspired learning experience for students. This is made explicit by the triangulated results (in-depth interviews and a large survey at two universities) that reveal the characteristics that students seek in their tutors. The findings have been categorised into three themes namely: Charisma, Academic skills and Teaching skills (CAsTs) to enable tutors to appreciate the areas that they may need to develop to inspire their students

    Bias and the informed observer: A call for a return to Gough

    Get PDF
    Copyright @ 2009 Cambridge University Press.No abstract available

    Engaging students in ethical debates

    Get PDF
    This case study outlines an investigation into the acceptance of a new pedagogical paradigm aiming to engage and inspire students in ethical and entrepreneurial activit

    From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record.The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for individual, or a limited group of the elements. Taking the total REE resource, only one currently known deposit (Bayan Obo) would class as giant (>1.7 × 107 tonnes contained metal), but a range of others classify as large (>1.7 × 106 tonnes). With the exception of unclassified resource estimates from the Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity - either carbonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of the primary igneous source, but the grade is a complex function of igneous source, magmatic crystallisation, hydrothermal modification and supergene enrichment during weathering. Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle, enriched in trace elements either by plume activity, or by previous subduction. The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits (e.g. Bayan Obo). Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade, depending on primary mineralogy and the availability of ligands. Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld (Australia) and Tomtor (Russia). For the individual REE with the current highest economic value (Nd and the HREE), the boundaries for the large and giant size classes are two orders of magnitude lower, and deposits enriched in these metals (agpaitic systems, ion absorption deposits) may have significant economic impact in the near future.Natural Environment Research CouncilUniversity of Exete

    The significance of atmospheric nutrient inputs and canopy interception of precipitation during ecosystem development in piñon-juniper woodlands of the southwestern USA

    Get PDF
    In arid ecosystems, widely spaced vegetation and prolonged dry periods may enhance canopy capture of nutrients from dry deposition. Additionally, differences in precipitation type, plant canopy architecture, and soil nutrient limitation could affect canopy exchange of atmospherically derived nutrients. We collected bulk precipitation and throughfall underneath piñon pine (. Pinus edulis) and one-seed juniper (. Juniperus monosperma) along a substrate age gradient to determine if canopy interception or throughfall chemistry differed among tree species, season, or substrate age. The Substrate Age Gradient of Arizona consists of four sites with substrate ages ranging from 1ky to 3000ky-old, which exhibit classic variations in soil nitrogen (N) and phosphorus (P) availability with substrate age. Greater nutrient inputs below canopies than in intercanopy areas suggest throughfall contributes to the "islands of fertility" effect. Canopy interception of precipitation did not differ between tree species, but was greater in the summer/fall than winter/spring. We found that net canopy retention of atmospherically derived N was generally greater when N availability in the soil was low, but retention also occurred when N availability was relatively high. Taken together, our results were inconclusive in determining whether the degree of soil nutrient limitation alters canopy exchange of plant growth-limiting nutrients. © 2013 Elsevier Ltd

    Sub-regional courts and the recusal issue: Emergent practice of the East African Court of Justice

    Get PDF
    Copyright @ 2012 African Society of International and Comparative Law / Edinburgh University Press.No abstract available

    Dynamics of localization in a waveguide

    Get PDF
    This is a review of the dynamics of wave propagation through a disordered N-mode waveguide in the localized regime. The basic quantities considered are the Wigner-Smith and single-mode delay times, plus the time-dependent power spectrum of a reflected pulse. The long-time dynamics is dominated by resonant transmission over length scales much larger than the localization length. The corresponding distribution of the Wigner-Smith delay times is the Laguerre ensemble of random-matrix theory. In the power spectrum the resonances show up as a 1/t^2 tail after N^2 scattering times. In the distribution of single-mode delay times the resonances introduce a dynamic coherent backscattering effect, that provides a way to distinguish localization from absorption.Comment: 18 pages including 8 figures; minor correction

    Evolution of plasmonic response in growing silver thin films with pre-percolation non-local conduction and emittance drop

    Full text link
    The optical response of growing silver thin films undergoes a transition dominated by three distinct plasmonic modes, two localized and one delocalized. Their admix as a function of added mass is analysed. The onset of the delocalized or Drude mode occurs before the sharp electrical percolation transition so optically the full insulator-metal transition is broadened. A scaling explanation supported by images shows Ag islands only have to link up over 200-300 nm to yield partial delocalization. The localized modes are (i) from silver nano-islands and (ii) a transitional anomalous mode, peaking near the dc critical percolation point, from islands surrounded by network. Growing silver within a multilayer oxide stack is compared with that on glass. The transition in thermal emittance matches that in the delocalized mode. Its broadening enables practical tuning of intermediate emittance by varying mass. © 2011 IOP Publishing Ltd

    Metal nanoparticle plasmonics inside reflecting metal films

    Full text link
    Oxide coated metal nanoparticles buried within a thin metal layer support a surface plasmon resonance. A local dip occurs in spectral reflectance along with a switching off of the film's plasmonic response. Models are introduced in which these resonances are tunable by altering the ratio of oxide thickness to core particle radius. The optical response of two experimental examples is presented and modeled using effective medium theory. Beyond the resonance zone the doped layer switches back to the plasmonic response of a nanoporous version of the host metal whose effective plasma frequency arises only from the percolating component. © 2010 American Institute of Physics
    • …
    corecore