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The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often
quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for indi-
vidual, or a limited group of the elements. Taking the total REE resource, only one currently known
deposit (Bayan Obo) would class as giant (>1.7 x 107 tonnes contained metal), but a range of others
classify as large (>1.7 x 10° tonnes). With the exception of unclassified resource estimates from the
Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity — either car-
bonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of
the primary igneous source, but the grade is a complex function of igneous source, magmatic crystal-
lisation, hydrothermal modification and supergene enrichment during weathering. Isotopic data suggest
that the sources conducive to the formation of large REE deposits are developed in subcontinental
lithospheric mantle, enriched in trace elements either by plume activity, or by previous subduction. The
reactivation of such enriched mantle domains in relatively restricted geographical areas may have played
a role in the formation of some of the largest deposits (e.g. Bayan Obo). Hydrothermal activity involving
fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in
grade, depending on primary mineralogy and the availability of ligands. Weathering and supergene
enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld
(Australia) and Tomtor (Russia). For the individual REE with the current highest economic value (Nd and
the HREE), the boundaries for the large and giant size classes are two orders of magnitude lower, and
deposits enriched in these metals (agpaitic systems, ion absorption deposits) may have significant

economic impact in the near future.
© 2016, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

approaches, and in a wide range of high technology applications.
Reviews are given in Chakhmouradian and Wall (2012), Gunn

The rare earth elements (REE) are currently a focus of global
attention because of geopolitical controls on their supply (Hatch,
2012), which have led to them being included in recent and cur-
rent lists of critical metals (US Department of Energy, 2011; British
Geological Survey, 2012; European Commission, 2014). Their
importance comes from their use in the production of high strength
magnets, fundamental to a range of low carbon energy production

* Corresponding author.
E-mail address: martin.smith@brighton.ac.uk (M.P. Smith).
Peer-review under responsibility of China University of Geosciences (Beijing).

http://dx.doi.org/10.1016/j.gsf.2015.12.006

(2014), and Wall (2014). Production is currently limited to a small
number of large deposits (e.g. Bayan Obo, China; Mountain Pass,
USA; Mount Weld, Australia; Lovozero, Russia), by-products (e.g.
mineral sands, India) or to deposits that have enrichments in spe-
cific elements of current high demand, notably dysprosium (Dy),
terbium (Tb) and other HREE (e.g. the so called ion absorption
deposits in weathered granite of southern China; Kanazawa and
Kamitani, 2006). However, a number of deposits are known from
relatively recent past production, are currently at the stage of
feasibility studies, are at advanced stages of exploration or have
been the focus of research. Of these, given the small size of the REE
market, most are large enough to have a significant impact on
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global supply, although only Bayan Obo may truly be considered as
giant.

The formal definition of a giant ore deposit was proposed by
Laznicka (1999) on the basis of the tonnage accumulation index
(Laznicka, 1983). This is the amount of metal in a defined ore body
divided by its average crustal concentration (or ‘Clarke value’). The
aim of this was both to show the relative enrichment of different
metals in a directly comparative manner, removing the absolute
variation of concentration between different metals, and to remove
economic bias from discussion of the scale of ore bodies. The latter
aim can only ever be partly successful as it is dependent on the cut-
off grade used to define an ore body—an inherently economic
consideration. However, this approach remains the most clearly
defined way to address the problem. Laznicka (1999) defined a
giant ore deposits as having a tonnage accumulation index of
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1 x 10", and a large ore body a tonnage accumulation index of
1 x 10'°. For these values, and using an average REE crustal con-
centration of 1.5 x 102 ppm (Wedepohl, 1995), a large REE deposit
would have 1.7 x 108 tonnes of contained REE,03, and a giant de-
posit would have 1.7 x 107 tonnes of contained REE,03 (calculated
assuming an intermediate atomic mass for REE of 150). The avail-
able data for resources in REE deposits from Orris and Grauch
(2002) and Long et al. (2010) and other sources are shown in
Fig. 1A, and the deposits of large size or greater are shown in Fig. 1B.
Because of the current scarcity of data for many of these deposits,
resource estimates are commonly not JORC/NI43101 compliant, and
for simplicity in this review we have used the figures quoted by
those authors. Where compliant data are available they are
mentioned below. Of all currently known REE deposits, only Bayan
Obo, China, with the ore grade defined at 4.1 wt.% REE;03, counts as
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Figure 1. Grade-tonnage plot for resource estimates in REE deposits from Orris and Grauch (2002) and Long et al. (2010). Size classifications after Laznicka (1999) calculated as

described in the text.
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a truly giant deposit. A number of deposits classify as large, how-
ever, and these are likely to have a significant impact on the pro-
duction of the REE in the near future.

In this paper we review the geological and geochemical char-
acteristics of large and giant REE deposits, and examine the un-
derlying geological controls on the formation of these bodies. It also
worth noting, however, that the largest accumulations of the REE
are not necessarily those with the greatest potential economic
impact. At present, the greatest demand for the REE is for Nd, one of
the light REE (LREE) and some of the heavy REE (HREE): Eu, Dy, Tb
(HREE defined as REE with atomic mass greater Eu). If the REE are
considered as individual elements, rather than as a group, then the
corresponding tonnage accumulation indices for the definition of
large and giant sized deposits would be reduced by an order of
magnitude for the HREE.

2. Deposit types

Rare earth element deposits are developed in virtually all major
rock types with examples from igneous, metamorphic and sedi-
mentary (weathering profiles, residual deposits and placers) host
rocks (Orris and Grauch, 2002; Long et al., 2010) from settings
worldwide (Fig. 2). Large and giant deposits for the whole REE
group, however, with the exception of Olympic Dam, are developed
in association with alkaline igneous rocks — either carbonatite or
syenite. Individual HREE have potentially large deposits sensu
stricto within the weathered granitoid deposits of SE China (Chi and
Tian, 2008).

Carbonatite is an igneous rock with 50 modal% carbonate (sensu
lato) and containing less than 20 wt.% SiO, (Le Maitre et al., 2002),
although Mitchell (2005) argued for a broader definition. Mitchell
(2005) went on to specify a distinction with genetically related
carbothermal residua — that is rocks derived from CO;-rich hy-
drothermal fluids. Syenite is an igneous rock with <20 modal%
quartz, and alkali feldspar >65% of the total feldspar content
(Streckeisen, 1976). Rare earth enrichments are typically associated
with quartz-free, feldspathoid syenites. Such rocks are also
commonly peralkaline (mole fraction Na;O + K0 > Al,03) and as
such may contain sodic pyroxene (e.g. aegirine) and amphibole
(arfvedsonite and riebeckite). Extreme fractional crystallisation of
such rocks may lead to molal (Na;O + K;0)/Al,03 > 1.2, and the
formation of complex Zr and Ti minerals such as eudialyte — such
rocks are termed agpaitic (Le Maitre, 1989; Sgrensen, 1997).

Syenites and carbonatites may be related in some composite in-
trusions, either by extreme differentiation (Wyllie and Tuttle,
1960), or liquid-liquid immiscibility (e.g. Lee and Wyllie, 1998).

Olympic Dam stands alone as the only iron oxide-copper-gold
deposit that hosts significant REE mineralisation (Lottermoser,
1995). These REE resources hold currently uneconomic reserve
estimates, but may have the potential as by-products in the future.
Iron oxide-copper-gold systems are hydrothermal deposits, defined
by the dominance of iron oxides rather than sulphide gangues,
economic Cu and possibly Au mineralisation, and an association
with sodium-rich alteration haloes, and specific trace metal en-
richments, including the REE (Hitzman et al., 1992; Williams et al.,
2005). The hydrothermal fluids involved are not simply related to
coeval magmatic sources, although magmatic-hydrothermal fluids
are implicated in the formation of a number of deposits (e.g.
Pollard, 2001), and may involve high salinity brines derived from
interaction with evaporites, formation waters or highly saline sur-
face waters (Barton and Johnson, 1996, 2000). The characteristics of
key large and giant sized deposits are summarised in Table 1.

3. Key large and giant ore deposits

Bayan Obo — The Bayan Obo ore bodies are currently the only
known, truly giant sized deposit of the REE. They consist of bast-
ndsite and monazite developed alongside significant Fe minerali-
sation in the form of magnetite and hematite (Chao et al., 1997). The
ores are hosted within dolomite marble (Le Bas et al., 1997) and
may be associated with a local swarm of carbonatite dykes which
cut the surrounding Proterozoic metasedimentary sequence and
basement Archaean gneiss (Tao et al., 1998; Yang et al., 2011). The
mineralisation is associated with alteration of the host dolomite
marble to fluorite, apatite, aegirine-augite, riebeckite, arfvedsonite
amphibole and barite, with a host of subsidiary REE minerals and
related niobium mineralisation. The ores are strongly banded,
which Smith et al. (2015) argued was a result of deformation of the
ore, possibility intensifying a primary metasomatic banding
(Fig. 3A). The banding is cut by veins of aegirine, riebeckite, apatite,
calcite and barite associated with further REE mineralisation and
the majority of Nb mineralisation. The ores as they now occur are
dominantly hydrothermal in origin, but some of the original
accumulation may relate to direct magmatic crystallisation from
carbonatites intruded into the host marble. The geochronology of
the ores is complex, with periods defined from 1230 to 1350 Ma
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Figure 2. Locations of main large and giant REE deposits mentioned in the text.



Table 1

Approximate resource estimates and description of large and giant REE deposits by the criteria of Laznicka (1999) and as described in the text. Data from Orris and Grauch (2002) and Long et al. (2010), with other references as

cited.
Deposit REE Grade (wt.%) Contained REE;03 Location Description References
Tonnage (Mt) (ppm)
Carbonatite magmatism related
Bayan Obo — low grade 750 4.1 30.750 China 41°48'7"N, Metamorphosed, multistage hydrothermal deposit Drew et al., 1990; Chao et al., 1997; Wu,
109°59'24"E related to several episodes of carbonatite 2008; Smith et al., 2015

magmatism

Bayan Obo — high grade 48 6 2.880

Bear Lodge Mountains 726 1.306 9.482 USA 44°29'N, 104°27'E Carbonatites within the Bear Lodge Alkaline Moore et al., 2015
complex associated with diatreme breccias

Amma (Amba) Dongar 105 3 3.150 India 22°N, 72°E Carbonatite intrusive complex associated with Viladkar, 1981; Orris and Grauch, 2002;
economic hydrothermal fluorite mineralisation, Williams-Jones and Palmer, 2002
associated with syenites, and intruded in
Cretaceous sediments and Deccan Basalt

Mushgai Khudag 200 1.5 3.000 Mongolia 44°20'N, Alkaline intrusive complex with alkaline igneous Samoylov et al., 1988; Orris and Grauch,

104°00'E association, carbonatite and nelsonite 2002

Mountain Pass 29 89 2.581 USA 35°29'N, 115°32'E Carbonatite sill intruded into shonkinite, syenite Olson et al., 1954; Mariano and Mariano,
and granite 2012

Laterite (carbonatite)

Tomtor 100 8 8.000 Russia 71°00'N, 116°35’E Deep weathering of multistage alkaline igneous and ~ Kravchenko et al., 1996; Orris and Grauch,
carbonatite complex (700—410 Ma) 2002

Araxa 450 1.8 8.100 Brazil 19°38'N, 46°56'E Carbonatite intrusive complex associate with Traversa et al., 2001; Orris and Grauch, 2002
alkaline ignenous rocks, intruded into Proterozoic
metasediments. Deep weathering with residual
enrichment

Mount Weld 15 11.2 1.680 Australia 28°52'S, 122°33’E Carbonatite intrusive complex intruded into Lottermoser, 1990; Orris and Grauch, 2002;
Archaean metavolcano-sedimentary rocks. Deep Long et al., 2010
laterite profile with residual enrichment

Illimausaq 457 1.07 4.890 Greenland 60°00'N, U-REE-Zr deposit in Ilimaussaq alkaline complex Long et al., 2010; Serenson et al., 2006

(Kvanefjeld; Kringelerne) 51°12'W

Lovozero 200 1.2 2.400 Russia 67°47'N, 34°45'E Magmatic and magmatic-hydrothermal Kogarko et al., 1995; Orris and Grauch, 2002
mineralisation in nepheline syenite, associated
alkaline rocks, alkaline pegmatites and
hydrothermal veins

Strange Lake 137 0.97 1.329 Canada 56°18'N, 64°07'W Hydrothermally modified pegmatite in Elsonian age Salvi and Williams-Jones, 2006; Long et al.,
peralkaline granite, intruded into Archaean 2010
metasedimentary and igneous rocks

Thor Lake/Nechalacho 64 1.56 1.000 Canada 62°5'N, 112°37'W Hydrothermally modified layered syenite intruded Sheard et al., 2012; Avalon Rare Metals Inc.,
into peralkaline intrusive complex 2013

Laterites (Syenite)

Dong Pao 500 14 7.000 Vietnam 22°17'N, 103°34'E Deep weathering of metasomatic mineralisation in Kusnir, 2000; Fujii et al., 2010; Long et al.,
Palaeogene syenite and quartz-syenite intruded 2010; USGS, 2015
into Proterozoic metamorphic rocks

10CG

Olympic Dam 2000 0.15 3.000 Australia 30°27'S, 136°53’E Proterozoic hydrothermal breccia complex intruded Oreskes and Einaudi, 1992; Reynolds, 2000
into Proterozoic granitoid. REE mineralisation
associated with hematite alteration and Cu
mineralisation

Metamorphic

Mau Xe North 557 14 7.798 Vietnam 22°29'N, 103°30'E Metamorphic/metasomatic REE deposit hosted in Kusnir, 2000; Orris and Grauch, 2002; Long

Carboniferous to Permian marble, limestone, schist.
Possible carbonatite affinitiy

et al,, 2010; USGS, 2015
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Figure 3. Representative images of REE mineralisation at key deposits. (A) Banded ore
from the main pit at Bayan Obo. Bands dominated by fluorite and magnetite are inter-
leaved with those dominated by apatite, monazite and bastndsite. (B) Laterite devel-
oped over carbonatite at Mount Weld, Australia. (C) The Kringlerne layered series in
the South of the llimaussaq intrusion viewed from the West. The view is approximately
200 m high. Each layer is made of three units rich in: alkali feldspar and nepheline
(white, top), eudialyte (red) and alkali amphibole (black, bottom). Each layer is
approximately 10 m thick. The layering drapes over a large (~100 m wide) xenolith in
the centre of the view.

(largely on Sm-Nd mineral isochrons) and from ~400 to 450 Ma
(largely on Th-Pb data for ore minerals; Table 2). Both periods have
now been identified from core to rim U-Pb isotope variation in
zircon (Campbell et al, 2015), and support interpretations of
multistage mineralisation, metamorphism and metasomatic over-
print of the ores (Zhang et al., 2003; Smith et al., 2015).

Bear Lodge — The Bear Lodge Carbonatite complex is not
currently mined, but hosts potentially economic REE concentra-
tions. The geology of the deposit has recently been reviewed and
further studied by Moore et al. (2015). The Bear Lodge Alkaline
Complex is part of the Black Hills Intrusive Belt, South Dakota, USA.
It consists of a subvolcanic intrusive complex of trachyte, phonolite
and latite, with very minor syenite, nepheline syenite and

lamprophyre (Staatz, 1983). These are cut by heterolithic, intrusive
breccias, which are in turn cut by stockworks of intrusive carbo-
natite of 52 + 0.2 Ma age (Anderson et al., 2013), exemplified by the
Bull Hill deposit (Moore et al., 2015). The deposit is weathered and
oxidised to depths of around 120—180 m. Mineralisation in fresh
carbonatite consists of burbankite, early-stage parisite-(Ce) and
synchysite-(Ce) with minor bastndsite-(Ce), which have been
affected by multistage hydrothermal alteration to produce sec-
ondary fluorcarbonates, ancylite-(Ce) and monazite-(Ce). REE
mineralisation in the oxidised zone is dominated by fluorcar-
bonates, cerianite, and monazite-(Ce) (Moore et al., 2015). The
deposit is typically LREE rich, although REE patterns in minerals do
vary with paragenesis. Radiogenic isotope systematics of the car-
bonatite indicate that the source of the magma was in the sub-
continental lithospheric mantle, and modified by subduction-
related metasomatism, whereas oxygen and carbon stable isotope
ratios are consistent with a primary, mantle derived carbonatite,
modified by hydrothermal circulation of ultimately meteoric
derived waters (Moore et al., 2015).

Araxd — Araxa is a carbonatite intrusion-hosted deposit, which
forms part of the Alto Paranaiba Province, southern Brazil (Traversa
etal., 2001). It consists of a 4.5 km diameter, circular intrusion, with
radial and concentric carbonatite dykes, with mica-rich rocks,
phoscorites and lamprophyres, intruding Proterozoic schists and
quartzites of the Araxa Group. It has 2.5 km wide, fenite aureole
(Traversa et al., 2000; Nasraoui and Waerenborgh, 2001). The
complex is inferred to be between 80 and 90 Ma in age (Gibson
et al., 1995; references in Traversa et al., 2000). Pyrochlore from
Araxa supplies the bulk of the World’s niobium. There is also REE
mineralisation, dominantly LREE-rich, hosted in monazite, with
lesser amounts of burbankite, carbocernaite, ancylite and huan-
ghoite. Monazite and burbankite are apparently magmatic phases,
with the hydrothermal formation of carbocernaite and huanghoite,
the latter associated with the formation of barite-chalcedony-
quartz rock (Traversa et al., 2000).

Amma (Amba) Dongar — The Amba Dongar complex is a carbo-
natite intrusion associated with the Deccan Volcanic Province, In-
dia, and is spatially associated with the extrusion of flood basalts
(Williams-Jones and Palmer, 2001). Syenite intrusions occur in the
surrounding country rocks (including late Cretaceous sandstone
and limestone as well as basalt), whilst the carbonatite consists of
concentric rings of carbonatite breccias, calcio-carbonatite and
ankeritic carbonatite. The complex hosts large, currently exploited,
fluorite deposits (11.6 Mt of 30% CaF, — Williams-Jones and Palmer,
2001), but also REE ores of around 105 Mt at 3 wt.% REE;03 (Orris
and Grauch, 2002), dominantly in bastndsite-(Ce) and monazite-
(Ce). The surrounding sandstones have undergone extensive
potassic fenitisation (Williams-Jones and Palmer, 2001). The car-
bonatite exsolved a range of aqueous-carbonic solutions, which
fenitised the aureole, and later underwent hydrothermal alteration
from lower T (<150 °C) meteoric hydrothermal solutions which
formed fluorite (Palmer and Williams-Jones, 1996).

Mushgai Khudag — The Mushgai Khudag REE deposit is located
in central South Mongolia. It is located in the central part of the
Mushgai Khudag volcano-plutonic complex with a central ring
structure of almost 30 km in diameter. It is intruded into middle
Paleozoic sedimentary and volcanogenic rocks within the Mandal
Gobi hills. The REE mineralisation is hosted by late Jurassic (142 + 3
Ma) alkaline intrusions including syenites, granosyenites por-
phyries and shonkinite porphyries, which form stocks and/or dikes
(Kynicky, 2006; Baatar et al., 2013). Twenty ore bodies have been
recognised along the endo- and exocontact parts of syenite and
syenite-porphyry bodies. The ore includes mineralised breccia with
carbonate cement, mineralised carbonatite, magnetite-apatite ore
and complex phosphate ore. Phosphate dominantly occurs in the
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Table 2
Summary of mineralogy and geochronology of large and giant REE deposits.
Deposit Main host minerals Processes Age (Ma) Notes References
Carbonatite magmatism related
Bayan Obo Mon, Bast Mag?, Ht 1235—-1341 Ore Sm-Nd isochrons Refs. in Smith et al., 2015
Mag?, Ht 1314 + 56.5 Ore Zircon concordia (core) Campbell et al., 2015
Mag?, Ht 1223-1354 Carbonatite Sm-Nd isochrons Refs. in Smith et al., 2015
Mag?, Ht 402—-442 Vein Sm-Nd isochrons Refs. in Smith et al., 2015
Meta, Ht 398-553 Ore Th-Pb isochrons Wang et al., 1994
Meta, Ht 455 + 28 Ore Zircon concordia (rim) Campbell et al., 2014
Bear Lodge Mountains Burb, Par, Synch Mag, Ht 52 +£0.2 Ar-Ar biotite + K-feldspar Anderson et al., 2013
Amba Dongar Bast, Mon Mag, Ht 61-76 K-Ar fenite feldspar Deans et al., 1972
Mushgai Khudag Mag 138 £3 Rb-Sr isochron Baatar et al., 2013
Mountain Pass Bast Mag 1375 +£5 Th-Pb carbonatite monazite DeWitt et al., 1987; Castor, 2008
Mag 1417 £ 4.6 U-Pb zircon Premo et al., 2013
Laterite (Carbonatite)
Mount Weld Mon, Synch (primary), Mag, Ht 2025 + 10 Re-Os isochron Graham et al., 2004
Mon, Church, Weath 2380 + 170 Bulk rock Sm-Nd Graham et al., 2004
Plgm (secondary) 2021 +£13 Rb-Sr isochron Collerson, 1982
late Cretaceous—early Stratigraphic Graham et al., 2003, 2004
Cenozoic
Araxa — total Mon Mag, Ht, Weath 80—90 K/Ar, Ar/Ar, U/Pb Refs. in Traversa et al., 2000
Tomtor Flor, Mon, Rhab Mag, Weath 700 Syenite U-Pb zircon Vladykin et al., 2014
Xen, Bast 400 Carbonatite Ar-Ar mica Vladykin et al., 2014
Alkaline magmatism related
Illimausaq/Kvanefjeld Mag 1108 £+ 21; 1143 £ 20 Rb-Sr whole rock Wau et al., 2010
Mag 1168 + 21 Rb-Sr whole rock Blaxland et al., 1978
Mag 1160 £ 2 Rb-Sr whole rock Waight et al., 2002
Lovozero Lop Mag 373 £ 11 U-Pb loparite Mitchell et al., 2011
Mag 370 £ 6.7 Rb-Sr whole rock Kramm and Kogarko, 1994
Strange Lake All, Gad, Kain, Fluo, Mag, Ht 1240 + 2 Miller et al., 1997
Bast, Gar, Mon Mag, Ht 1271 £ 30 K-Ar amphibole Currie, 1985
Thor Lake Eud, Zir, Ferg, Bast, Mag, Ht 2094 + 10 U-Pb zircon Bowring et al., 1984
Par, Synch, All
10CG
Olympic Dam Bast, Flor, Mon, Xen Ht (I0CG) 1572 £ 99 Sm-Nd isochron Johnson and McCulloch, 1995
Ht (I0OCG) 1592 + 8; 1584 + 20 U-Pb zircon Johnson and Cross, 1995
Ht (I0CG) 1590 + 8; 1577 + 5 207pp—206ph hematite Ciobanu et al., 2013
Laterites (syenite)
Dong Pao Bast Mag, Weath Palaoegene Stratigraphic Fujii et al., 2010
Metamorphic
Mau Xe North Bast, Par, Pyr Mag?, Meta 30.2 +34t031.6 £3.7 Thuy et al.,, 2014

Mon — Monazite; Bast — Bastnasite; Burb — Burbankite; Par — Parisite; Synch — synchesite; Church — Churchite; Plgm — Plumbogummite; Lop — Loparite; All — Allanite; Gad —
Gadolinite; Kain — Kainite; Fluo — Fluocerite; Gar — Garagrinite; Xen — Xenotime; Pyr — Pyrochlore; Rhab — Rhabdophane; Eud — Eudailyte; Zir — Zircon; Ferg — Fergusonite.
Dominant formation processes indicated by Mag — magmatic; Ht — Hydrothermal; Weath — Weathering. IOCG denotes Iron oxide copper-gold type deposit.

form of apatite and the REE are mainly hosted in bastndsite and Ca-
REE fluorcarbonates. The complex mineralogy and paragenetic re-
lations of the ore attest to a primary magmatic accumulation
modified by hydrothermal processes. Alteration associated with
REE mineralisation includes feldspar, apatite, fluorite, celestine,
magnetite and barite (Baatar et al., 2013). The resource at Mushgai
Khudag has variably been reported as 200 Mt at 1.5 wt.% REE;03, to
more recent estimates of 23 Mt at an average grade of ~1 wt.%
REE,03 (restricted to the main ore body).

Mountain Pass — The Mountain Pass deposit, California, USA, was
the world’s largest source of the LREE from the 1960s to the mid-
1990s, before closing in 2002 and reopening in 2013. The rare
earth ore body is hosted by the Sulphide Queen Carbonatite (Olson
et al., 1954). The carbonatite is unusual that it is associated with
ultrapotassic alkaline rocks ranging from shonkinite, through sye-
nite to granite (Castor, 2008). These form a group of roughly tabular
to lensoid bodies intruded into rocks of the ultrapotassic volcanic
belt over ~ 10 km (Castor, 2008). The main REE mineral in the ore is
bastndsite-(Ce), with minor parisite-(Ce) and monazite-(Ce). The
carbonatite overall is unusual in extreme LREE and Ba enrichment
and its depletion in Nb and P. The carbonatites have been dated at
1375 + 5 Ma, approximately 25 Ma younger than the associated
ultrapotassic rocks (DeWitt et al., 1987). Bastndsite and barite both
appear to be magmatic phases (Fig. 4) in sovite and dolomitic sévite
carbonatites (Castor, 2008). Castor (2008) concluded that, despite

apparent age differences, the carbonatites where probably derived
from similar magmas to the ultrapotassic suite, ultimately derived
from mantle enriched either by metasomatism, or contamination
by subducted crustal rocks. A zone of fenitisation surrounds the
carbonatite dykes, and fluorite veins are present.

Mount Weld — The Mount Weld deposit, western Australia, is
developed in a 70—130 m thick laterite (Fig. 3B) developed on
carbonatite bedrock (Duncan and Willett, 1990; Lottermoser, 1990;
Hoatson et al., 2011). As well as REE;O3 resources of 15 Mt at
11.2 wt.%, it also hosts significant resources of Nb, Ta, Zr, and
phosphate. The carbonatite intrudes an Archaean volcano-
sedimentary sequence, within the fault bounded Laverton tec-
tonic zone, and has itself undergone greenschist facies meta-
morphism. It forms part of a Palaeoproterozoic alkaline magmatic
province, including kimberlites and other carbonatites (Duncan
and Willett, 1990). The lateritic regolith is the host to the main
economic REE resources. Primary carbonatite REE minerals and
REE-bearing minerals (apatite, monazite-(Ce), synchysite-(Ce))
were broken down during weathering and redeposited in the
laterite profile as neoformed apatite and monazite-(Ce), crandallite,
goyazite, gorceixite, and florencite-(Ce), with the HREE being
particularly concentrated in xenotime-(Y) and churchite-(Y)
(Lottermoser and England, 1988; Lottermoser, 1990). There are also
REE concentrations in the lacustrine sediments which overly the
laterite profile. Radioisotope data indicate the primary carbonatite
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Figure 4. QEMSCAN® false-colour images of REE mineralisation in Mountain Pass car-
bonatite: primary magmatic bastndsite is cut by Mn-rich quartz-barite hydrothermal
mineralisation with associated synchysite and parisite. QEMSCAN®: quantitative
evaluation of minerals using scanning electron microscopy. Details of the analytical
technique are reviewed by Haberlah et al. (2011), and Knappett et al. (2011). Image
courtesy of G. K. Rollinson, Camborne School of Mines.

was intruded between 2080 and 2100 Ma (Collerson, 1982; Nelson
et al.,, 1988; Graham et al., 2004; Hoatson et al., 2011). The age of
lateritic weathering is not known but the overlying lacustrine
sediments are inferred to be late Cretaceous to early Cenozoic.
[sotopic constraints indicate the primary carbonatite was derived
from melting of an enriched mantle source (Graham et al., 2004).
The long term leaching and redeposition of the REE by groundwater
in the Mesozoic to Cenozoic was critical in REE enrichment to form
an economic resource.

Dong Pao — The Dong Pao deposit in North Vietnam is associated
with a Palaeogene alkali granite intrusion (Fujii et al., 2010). The age
has not yet been accurately determined. The deposit formed in as-
sociation with carbonatites, but is notably lateritised in the
economically extracted parts of the ore (Fujii et al., 2010). Bastndsite-
(Ce) occurs with fluorite and barite in weathered residues and con-
centrates. The laterite profile is up to 100 m thick, with highest REE
grades in a saprolitic zone at ~60 m below surface. Above this is an
oxidised laterite zone with pronounced positive and negative Ce
anomalies from which the REE have potentially been leached (Fujii
et al., 2010). The REE are dominantly hosted in bastndsite-(Ce).

llimaussaq — Ilimaussaq is a subvolcanic igneous complex
(Serenson et al., 2006), part of the Mesoproterozoic Gardar
(1300—1150 Ma) Province of South Greenland (see Upton et al.,
2003, Upton et al., 2013 for reviews). It represents the products of
extended fractionation from an alkali olivine basalt parent in late
Gardar times (1160 + 2 Ma, Waight et al., 2002) and was emplaced
as nested peralkaline rocks, cored by an agpaitic magma, which was
then cross-cut by late-stage veins and pegmatites. The agpaitic
magma had % level Zr and TREE (with significant Nb, Ta), forming
feldspathoids, alkali feldspar, alkali pyroxene or amphibole, and the
sodium zirconosilicate eudialyte, alongside a plethora of acces-
sories, many of which host REE. The magma had exceptionally low
viscosity and, although the exact mechanism remains in debate (cf.
Serenson, 1997; Pfaff et al.,, 2008; Hunt, 2015), magma chamber
processes produced a stratified deposit, rich in sodalite near the
roof (North), fine-grained, laminated, rare-element-rich rocks in

the centre and spectacular decametre-scale layered rocks
(comprising feldspar/nepheline, eudialyte and amphibole rich
layers) at the base (South, Fig. 3C). These three sequences are
known by the local terms ‘naujaite’, ‘lujavrite’ and ‘kakortokite’
respectively. Although Ilimaussaq contains many REE-enriched
minerals, the majority of the rare earth are hosted in rock-
forming zirconosilicates, notably eudialyte and steenstrupine.
These have complex structures that accommodate different REE in
different crystallographic sites, resulting in heavy- or middle-rare
earth enriched profiles. The whole complex was subject to post-
crystallisation hydrothermal alteration, which modified much of
the primary mineralogy and generated families of REE-rich sec-
ondary minerals. Ilimaussaq is divided into two licences, covering
the north (Kvanefjeld) and south (Kringlerne) of the complex.

Lovozero — The Lovozero nepheline syenite complex on the Kola
Peninsula, Russia is the world’s largest layered peralkaline syenite
intrusion, with an area of 650 km? (Kogarko et al., 1995). It has been
mined for loparite-(Ce) as a source of Nb and REE since 1951 (Wall,
2014). The only active mine is now an underground operation at
Karnarsurt operated by Lovozerskiy Gok. Lovozero is part of the
Kola Alkaline Province, which is located in the eastern part of the
Baltic Shield and contains many intrusions of alkaline and ultra-
basic silicate rocks and carbonatites, including the world’s largest
nepheline syenite complex at Khibiny (also spelled Khibina). The
Kola intrusions range in age from 410 to 362 Ma (Kramm and
Sindern, 2004). The Lovozero nepheline syenites are agpaitic, pro-
ducing, besides nepheline and alkali pyroxenes, a suite of Na and
Ti and Zr, silicates, such as eudialyte and lamprophyllite
(Chakhmouradian and Zaitsev, 2012), and a huge diversity of
minerals in associated highly differentiated pegmatites (Pekov,
2000). The Lovozero complex consists of four stages (Kogarko
et al., 1995) including two main intrusions of nepheline syenite.
The older, lower and outer nepheline syenite intrusion that ac-
counts for about 80% of the volume of the intrusion is rhythmically
layered (Chakhmouradian and Zaitsev, 2012) with repeating layers
of foyaite, urtite and lujavrite. The loparite is concentrated through
1600 m of the intrusion in urtite and lujavrite layers. It is a cumulus
phase and varies in composition according to the differentiation of
the magma (Kogarko et al.,, 2002). In the final stages of crystal-
lisation the volatile contents became very high and loparite
reacted with the residual melt to form an assemblage of bar-
ytolamprophyllite, lomonosovite, steenstrupine-(Ce), vuonnemite,
nordite-(Ce), nenadkevichite, REE-Sr-rich apatite, vitusite-(Ce),
mosandrite, monazite-(Ce), cerite and Ba-Si-rich belovite (Kogarko
et al.,, 2002). The younger, smaller intrusion accounts for about 40%
of the surface outcrop and contains eudialyte, with 2—2.5 wt.%
REE,0s3 is also a potential REE ore mineral (Chakhmouradian and
Zaitsev, 2012).

Strange Lake — The Strange lake deposit is a Mesoproterozoic,
peralkaline granite intrusion, dated at 1240 4+ 2 Ma (Miller et al.,
1997) and emplaced into paragneiss and quartz monzonitic host
rocks, surrounded by fluorite cemented ring breccias (Vasyukova
and Williams-Jones, 2014). Potentially economic concentrations
of the REE occur within and around pegmatites in the most altered
granite, hosted in a wide range of minerals notably including
allanite-(Ce), bastndsite-(Ce), fluocerite-(Ce), gadolinite-(Y),
gagarinite-(Y), kainosite-(Y), and monazite-(Ce). Hydrothermal
alteration within the pegmatites includes the development of
aegirine, and the alteration of zircono- and titano-silicate minerals
to gittinsite and titanite alongside hematisation of iron bearing
minerals (Salvi and Williams-Jones, 1996, 2006; Gysi and Williams-
Jones, 2013; Vasyukova and Williams-Jones, 2014).

Thor Lake/Nechalacho — Thor Lake/Nechalacho is a poly-rare
metal (Zr, Nb, REE, Ta, Be, Ga) deposit hosted by nepheline sye-
nite (Sheard et al,, 2012). The Nechalacho deposit was formerly



322 M.P. Smith et al. / Geoscience Frontiers 7 (2016) 315—334

known as the Lake Zone, and occurs as a layered alkaline igneous
sequence within the Thor Lake syenite. The syenite forms part of
the Blatchford Lake intrusive complex, which was intruded into
Archaean mica schists of the Yellowknife Supergroup, between
2185 and 2094 Ma (Sheard et al., 2012). The deposit itself has been
dated at 2094 + 10 Ma (Bowring et al., 1984). The layered complex
consists of a sodalite cumulate at its highest level, underlain by
pegmatitic syenite with layers of cumulate zircon, and pseudo-
morphs inferred to be after eudialyte. The LREE are dominantly
hosted in monazite-(Ce), allanite-(Ce) and Ca-REE fluorcarbonates.
The HREE are hosted in zircon and fergusonite-(Y). At least some of
this assemblage was formed by alteration of primary eudialyte,
although primary zircon also occurs. There is also evidence for
further hydrothermal alteration of zircon by fluoride and
carbonate-rich fluids (Sheard et al., 2012; Hoshino et al., 2013). The
deposit has significant relative enrichment of the HREE, with up to
27 wt.% HREE oxide relative to total REE oxides. Current measured
resources are 10.88 Mt at 1.67% REE;03, with indicated resources of
54.95 Mt at 1.54 wt.% (Avalon Rare Metals Inc., 2013).

Olympic Dam — Olympic Dam is an Iron oxide-copper-gold
(IOCG) deposit that forms a world class resource of Cu. In addi-
tion, as is typical of this deposit class (Hitzman et al., 1992; Williams
et al.,, 2005), it is anomalously enriched in the REE, in this case
enough to constitute a significant, but currently uneconomic,
resource, albeit at lower grades than other deposits of comparable
levels of contained metal. Early estimates put inferred resources as
high as 2000 Mt at 0.15 wt.% REE>03 (Reynolds, 2000), but more
recent estimates (marginal and inferred resources) suggest ton-
nages around 57 Mt, which would place Olympic Dam outside of
the large classification of Laznicka (1999). However, the high overall
tonnage of the deposit (tonnes at % Cu) and potential for large re-
sources depending on the grade definition mean that Olympic Dam
merits mention in this review. The deposit consists of hematite
cemented, diatreme, breccias, dominantly of granitic lithologies,
but also including clasts of laminated barite, volcanic rocks, other
intrusive rocks, vein fragments, and arkosic sediments (Reeve et al.,
1990). The REE are primarily present as bastnasite-(Ce), monazite-
(Ce), florencite-(Ce) and xenotime-(Y) (Reynolds, 2000), and in-
crease in concentration with increasing proportions of replacement
or matrix hematite in the breccias (Oreskes and Einaudi, 1992). The
deposits are inferred to have formed as, potentially magmatic-
related, explosion breccias (Oreskes and Einaudi, 1992). U-Pb
zircon ages of igneous rocks and mineralisation suggest all activity
was broadly coeval, at around 1590 Ma (Hoatson et al., 2011).

Mau Xe North — The Mau Xe North deposit occurs in the Fan Si
Pan mountains in the north of Vietnam, approximately 40 km to the
north of Dong Pao (Kusnir, 2000). Tabular or lens-form ore bodies
are hosted in Permo-Carboniferous limestones of uncertain prov-
enance (potentially carbonatite-related). REE mineralisation is
hosted in bastndsite and parisite, associated with uranopyrochlore,
gadolinite, pyrite, apatite and abundant barite and fluorite. The
highest grades (4—5 wt.% REE;03) are associated with a weathered
zone up to 20 m thick (Kusnir, 2000).

Tomtor — The Tomtor massif is a 300 km? ring complex, including
nepheline syenite, carbonatite and smaller amounts of alkaline-
ultrabasic potassic rocks (dominantly lamproites, but also picritic
dykes; Kravchenko, 2003). The intrusion is multistage with alkali
syenite and ‘barren’ carbonatite intruded at about 700 Ma and
lamproites and REE, Nb-rich carbonatite at 400 Ma (Vladykin et al.,
2014). The Nb-REE deposits are situated within and above a central
carbonatite stock (Kravchenko and Pokrovsky, 1995; Kravchenko
et al,, 1996) and the deposit is divided into two main horizons.
The lower ore horizon is up to 300 m thick and contains Nb and P-
rich rocks developed from several different original rocks including
carbonatites, picrites, various volcanics and the country rocks. The

upper horizon is developed in weathered carbonatite and lacustrine
sediments, and in part consists of a placer REE deposit, but with
evidence for extensive chemical reworking and redeposition of the
REE minerals (Kravchenko and Pokrovsky, 1995; Kravchenko et al.,
1996; Kravchenko, 2003). The upper horizon is the richest ore
zone, and contains REE and Y hosted in florencite/goyazite, mona-
zite-(Ce), rhabdophane, xenotime-(Y), and bastndsite, with Nb
concentrated in pyrochlore, columbite, rutile, and ilmenorutile
(Kravchenko and Pokrovsky, 1995) with evidence of biological
involvement in the mineral precipitation (Lazareva et al., 2015). The
deposit is also noticeable for enrichment in scandium (Sc).

The ion adsorption deposits of South China — The ion adsorption
deposits of southern China are not formally large or giant deposits
as defined here, as total REE resources. They are however, large
deposits for individual HREE, and have global significance in terms
of the supply for critical materials as they are currently the prin-
cipal source for HREE (Chi and Tian, 2008). Resources compliant
with international codes are not available for the deposits, but es-
timates range from ~1 Mt at 0.1 wt.% TREE;03 within individual
areas to combined resources in excess of 10 Mt, albeit still at low
grade (0.05—0.2 wt.% REE;03; Chi and Tian, 2008). At present 90% of
the known REE resources are located in Jiangxi, Guangdong and
Guangxi provinces where the climate is sub-tropical with annual
precipitation of over 1500 mm. The clays formed by lateritic
weathering of predominantly felsic granitoid rocks containing
accessory REE minerals (Kanazawa and Kamitani, 2006), and occur
in weathering profiles up to 30 m thick in geomorphologically
defined areas where erosion is minimal (Kynicky et al., 2012). The
REE occur dominantly in the clay-rich zones of the laterites, either
adsorbed onto the surfaces of kaolinite, halloysite and smectite, or
as secondary REE phases.

4. Summary of geochemical characteristics and key processes
4.1. Rare earth element distribution

The REE distribution is represented as summary chondrite
normalised (values from Wakita et al., 1971) plots in Fig. 5 for all
deposits where data are available. Yttrium is plotted as a pseudo-
lanthanide with atomic mass intermediate between Dy and Ho.
Carbonatite-related deposits are consistently LREE enriched rela-
tive to the HREE, with the most extreme enrichments occurring at
Bayan Obo, reflecting peaks in overall grade (Fig. 5A). Variation
within the group reflects fractional crystallisation of carbonatite,
late stage metasomatic enrichment, or both (e.g. Ambar Donga, Ray
et al, 2000). The patterns show little evidence for anomalous
behaviour of any REE. In contrast, within the alkali syenites, pat-
terns in the most REE enriched rocks are HREE dominated, although
earlier, eudialyte-free rocks (notably at Lovozero; Arzamastsev
et al., 2008; Fig. 5B) are relatively LREE enriched, but have lower
total REE. The overall trend reflects the extreme fractionation of the
agpaitic rocks. This is well illustrated by the analyses of samples
from the Strange Lake high grade mineralisation zone (Kerr, 2015)
where extreme levels of HREE enrichment are achieved, associated
with the development of a marked negative Eu anomaly. It should
be noted, however, that these rocks are typically highly heteroge-
neous and it is difficult to provide full representative bulk rock
analyses. Within the Olympic Dam breccia the REE pattern reflects
that of the host granitoids, again with the development of Eu
anomalies (Oreskes and Einaudi, 1992; Fig. 5C). The large sized
lateritised deposits (e.g. Mount Weld Dong Pao) are developed on
carbonatite substrates, and thus have very similar REE patterns to
the carbonatite group (Fig. 5D). The highest grades reached in lat-
erites, however, are higher than in unweathered carbonatites,
reflecting supergene enrichment, and positive and negative Ce
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Figure 5. Compilation of representative REE patterns from ores and host rocks classified by deposit type. Data from Oreskes and Einaudi, 1992; Ray et al., 2000; Traversa et al., 2000;
Arzamastsev et al., 2008; Fujii et al., 2010; Sheard, 2010; Kynicky et al., 2012; Lai et al., 2012; Baatar et al., 2013; Kerr, 2015; Moore et al., 2015.

anomalies are sporadically developed (notably at Dong Pao; Fujii
et al.,, 2010).

4.2. Temporal distribution

Analysis of the age and rock type data that are available for the
large and giant REE deposits (Table 2; Fig. 6A, B) indicates that there
are roughly as many deposits hosted in the Phanerozoic as in the
Precambrian and that carbonatite-related REE deposits have the
highest grade. Despite being small, the sample population appears
significant. Approximately two-thirds of carbonatites are Phaner-
ozoic in age (Woolley and Bailey, 2012) but only half of the large
and giant carbonatite-related deposits are Phanerozoic and the
majority of all dated carbonatites are located in Precambrian cra-
tons (Woolley and Bailey, 2012). The parental magmas for some
Paleozoic syenite-hosted REE deposits, e.g. Lovozero, are inter-
preted as the partial melts of deformed alkaline rocks and carbo-
natites in a Proterozoic suture zone (Burke and Khan, 2006), and
multistage geological histories have been observed in the deposits
associated with lithological hosts of greatest antiquity (Smith et al.,
2015). The implication is that increasing age and reworking of
source mantle may be related to REE concentration (Figs. 6C and 7).
The REE deposits associated with felsic silicate rocks, meta-
somatised and Phanerozoic carbonatites generally have higher
tonnage and lower grade than the Precambrian carbonatites.
Although the sample size of the population is small, there is a clear
trend of increasing REE grades from Phanerozoic back through the
Neoproterozoic and Mesoproterozoic to Palaeoproterozoic carbo-
natites (Fig. 7). Various additional hydrothermal, metamorphic
(Bayan Obo) and weathering (Mount Weld and Tomtor) processes
have increased the grade of the carbonatite-hosted REE deposits,

but do not appear to control the temporal enrichment pattern. This
suggests that the parental material of carbonatite-hosted REE de-
posits must be particularly enriched as an underlying control, or
that silicate-hosted REE deposits are the products of extreme dif-
ferentiation from very large volumes of less enriched alkaline
igneous rocks (nepheline syenites).

The Mesoproterozoic represents a peak in formation of the
highest grade REE deposits globally (Figs. 6 and 7), distinct from the
Phanerozoic peak in carbonatite occurrence that presumably re-
flects both global evolution of the mantle carbon cycle (Woolley
and Bailey, 2012) and the effects of geological preservation
(Hawkesworth et al., 2009). The underlying global-scale reasons for
REE enrichment must therefore lie within the prevalent mantle-
crust and tectonic settings. Studies of strontium, neodymium and
lead isotopes (Bell and Blenkinsop, 1987a; Kwon et al., 1989) are in
agreement that isotopic ratios for the crust and mantle began to
diverge at approximately 3000 to 2900 Ma and correspond to a
mean age of melt reservoir formation. The composition of the
subcontinental lithospheric mantle changed significantly from the
time of the first Archean melt reservoir to the Proterozoic due to
extended intervals of metasomatism (Griffin et al., 2003), with
enrichment of LREE either slightly before or at the same time as
carbonatite magma generation (Bell and Blenkinsop, 1987a). The
metasomatism is likely to have been driven by cycles of protracted
continental amalgamation, supercontinent break-up and conti-
nental reassembly (Casquet et al, 2012), which is temporally
associated with the Mesoproterozoic peak in large and giant ore
deposits (Fig. 6). Reworking and remelting of deformed alkaline
rocks and carbonatites associated with suture zones (Burke and
Khan, 2006) can partly explain periodic alkaline magmatism
through the geological column at particular localities (Bailey, 1993).
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Figure 7. Comparison of deposit age with grade.

It has also been suggested that transfer of stress across plates
caused by changes in the configuration of tectonic plates globally,
leads to reactivation of tectonic lineaments leading to decom-
pression melting and emplacement of small fraction magmas
(Bailey, 1993).

The temporal distribution of mineralisation within individual
deposits may also have a role to play in the formation of some of the
largest metal accumulations. Bayan Obo is perhaps the clearest
example of this, with a multistage geological history defined by a
very large number of geochronological studies summarised by
Smith et al. (2015). Clear peaks in the distribution of radiometric
ages occur at ~1.2—1.3 Ga (Sm-Nd rock and mineral isochrons; e.g.
Zhang et al., 2003) and 400—450 Ma (Th-Pb isochrons, Wang et al.,
1994; Sm-Nd isochrons from vein minerals, e.g. Hu et al., 2009).
Argon isotope geochronology attests to repeated periods of meta-
morphism in the intervening period (e.g. Ren et al., 1994). Thorium-
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Pb Concordia ages from zircon (Campbell et al., 2015) have now
indicated cores with ages of 1314 + 56.5 Ma and rims with ages of
455 4 28 Ma confirming 2 main periods contributing to metal-
logeny at the site. Smith et al. (2015) suggested an initial period of
alkaline magmatism and carbonatite related mineralisation that
was subsequently remobilised during Caledonian metamorphism,
possibly with another period of alkaline igneous related fluid flow
at this point, indicating reactivation of an enriched mantle source
within the new tectonic regime. In a similar way, radiometric age
determinations from the Tomtor deposit, for which two stage for-
mation has been proposed on the basis of field relations (pyroxe-
nites, melilites and ijolites, syenites and carbonatites in stage 1;
picritic to lamproitic sills and dykes, potassic ultramafic rocks,
mineralised carbonate-phosphate tuffs in stage 2), indicate a for-
mation period from 800 to 250 Ma, with possible main stages at
700 and 400 Ma (Vladykin et al., 2014).

4.3. Control from source

A large and diverse body of research has established the ulti-
mate mantle source of carbonatite including those (Simonetti et al.,
1995; Xu et al., 2003; Yang et al., 2011; Baatar et al., 2013; Moore
et al,, 2015) hosting the large and giant REE ore bodies (Fig. 8),
and also a mantle contribution to the REE metal flux in the largest
hydrothermal deposit types (e.g. Olympic Dam; Johnson and
McCulloch, 1995). Alkali syenite-hosted REE deposits such as
Lovozero and Ilimaussaq derive from larger fraction magmas that
also have a mantle source (Kramm and Kogarko, 1994; Stevenson
et al., 1997). The settings and source of some of the carbonatites
hosting large and giant REE deposits have been inferred to include:

e Any of rifted, anorogenic, subduction-related, or post-orogenic
tectonic settings (Simonetti et al., 1998; Kogarko et al., 2010;
Upton et al., 2013; Moore et al., 2015);
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e The frequent involvement of plumes, upwelling mantle or
plume-modification of lithosphere (Simonetti et al., 1998;
Graham et al., 2004; Castor, 2008);

e A ubiquitous need for metasomatism in a non-convective
subcontinental lithospheric mantle to provide the initial trace
element enrichment.

The available Sr and Nd isotope data for large and giant sized
REE deposits are summarised in Table 3. The similarity of Sr-
isotopic ratios for carbonatite and alkali-rich silica-undersatu-
rated rocks and basalts (Powell et al., 1966; Bell and Blenkinsop,
1987a, b) suggested an asthenospheric mantle plume source for
carbonatites (Menzies, 1987; Kwon et al., 1989; Schleicher et al.,
1990). However, coupling of the crust and mantle through time
suggested a lithospheric source depleted by crustal extraction (Bell
and Blenkinsop, 1987a), and a depleted lithosphere modified by
metasomatism was favoured by Meen et al. (1989). Subsequently,
mixing lines between HIMU and EMI in African and European
carbonatites (Bell and Tilton, 2001; Bell et al., 2004) were attributed
to a plume ascending from the deep mantle and the role of conti-
nental lithosphere was modified to volatile concentration in the
upper levels of the ascending plume. However, the plume model
fails to account for rejuvenation of carbonatite magmatism in
specific sites at times coincidental with major plate movements
(see above), is not always required, and does not always adequately
complement the range of igneous products, incompatible element
abundances and geophysical characterisation of the mantle-crust
system (Peccerillo and Lustrino, 2005). The first point indicates
that a decompressional stress model may be required to explain
melting in some places of continued carbonatite activity (Bailey,
1993). The source of syenite hosting REE deposits such as at Khi-
biny and Lovozero has a depleted isotopic mantle signature relative
to the carbonatites hosting large and giant REE deposits (Fig. 8)
that, coupled to a high rare metal enrichment favours mantle
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Figure 8. 3Nd/"4Nd vs. 37Sr/%%Sr isotope correlation diagram showing mixing between mantle end members in the source region for host rocks to, and minerals within, selected
large and giant REE ore deposits. Data for the large and giant ore deposits are from Kramm and Kogarko (1994), Simonetti et al. (1995), Stevenson et al. (1997), Xu et al. (2003), Yang
et al. (2011), Baatar et al. (2013), Moore et al. (2015). The mantle reservoirs DM, EMI, EMII, HIMU and PREMA are those of Zindler and Hart (1986). Reference lines are for the
Chondrite Normalise Uniform Reservoir (CHUR) and the Bulk silicate Earth (BE), using present day 37Sr/®5Sr = 0.7045 and extrapolated to 1354 Ma (Yang et al., 2011) since the case
studies span both the Proterozoic and Phanerozoic, as shown in Table 2.
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Table 3

Summary of available strontium and neodymium isotope data from large and giant REE deposits and associated igneous rocks. In this instance lateritised deposits are

considered by the original deposit type prior to weathering.

Deposit Tinitial (Ma) end esr References
Carbonatite magmatism related
Bayan Obo 1235-1341 -8 to +1 —0.41 to 38.84 Refs. in Smith et al., 2014
1223-1354 -1.7 to -0.5 2.66 to 83.805 Refs. in Smith et al., 2014
398-553 —18.7 to —10.8 Refs. in Smith et al., 2014
Bear Lodge Mountains 52 + 0.2 0.2 to 0.6 -15t02.7 Moore et al., 2014
Amma (Amba) Dongar 61-76 -1.6 to —0.8 15.1 to 19.2 Simonetti et al., 1995
Mushgai Khudag 138 +£3 —0.34 to -0.35 24.28 to 24.42 Baatar et al., 2013
Mountain Pass 1375 +£5 22 Premo et al., 2012
1417 + 4.6 -15to -6 23.60 to 56.32 Premo et al., 2013
Mount Weld 2025 + 10 0.61 to 0.49 —2.55to —0.85 Collerson, 1982; Graham et al., 2003, 2004
Tomtor 700 —3.19 to 0.78 Kravchenko and Pokrovsky, 1995
Alkaline magmatism related
Illimausaq/Kvanefjeld 1108 + 21 -1.5to -2.6 71.02 Wau et al,, 2010
1168 + 21 —-59to 0 —2.34 to 91.52 Blaxland et al., 1978; Stevenson et al., 1997
Lovozero 373 £ 11 +3.8to+44 —7.29 to —5.45 Mitchell et al., 2011
Strange Lake 1240 —1to -3 Kerr, 2015
10CG
Olympic Dam 1572 + 99 —49to -0.3 294.1 to 295.2 Johnson and McCulloch, 1995; Varga et al., 2009

metasomatism (Kogarko et al., 2010) as the mechanism for source
enrichment for large REE deposits. The radiogenic isotopic evidence
for the large and giant REE ore deposits suggests mixing between a
mantle source close to HIMU and an EMII (+EMI) component
(Fig. 8). The EMII mantle end-member is most likely to represent a
subcontinental lithosphere component since the presence of
metasomatism in a non-convecting lithospheric mantle is a
necessary pre-requisite in all the carbonatite-hosted case studies.

4.4. Magmatic processes

Carbonatites that originate as primary and parental magmas in
the mantle are accepted to be small fraction, near-solidus melts
that are dolomitic in composition (Wallace and Green, 1988).
Where carbonatites that host large REE deposits are associated
with pyroxenites (e.g. Araxd), similar REE profiles indicate a single
parent magma existed that has evolved through fractional crys-
tallisation of silicate minerals (Traversa et al., 2001). This suggests
that the parental magmas to the carbonatites that host some of the
large and giant REE ore deposits may contain an appreciable
amount of silica. The association of such carbonatites with lamp-
rophyres and kimberlites (e.g. Mount Weld, Bear Lodge) and the
isotopic similarity of the sources for carbonatites and syenitic rocks
(Fig. 8) further illustrate that a variety of carbonated silicate
parental magma compositions can exist in the ultimate mantle
source region for the REE ore deposits. A growing body of high
pressure experimental research shows that a continuum of com-
positions is generated with increasing melt fraction, pressure and
temperatures, from carbonatites through silicocarbonatite to sili-
cate magmas in the mantle (Girnis et al., 2005; Gudfinnsson and
Presnall, 2005; Moore, 2012). Small-fraction melting of mantle
metasomes can readily explain the volatile-rich nature of parental
magmas and REE-enrichment relative to most mantle-derived ba-
salts (Chakhmouradian and Zaitsev, 2012).

The large and giant REE ore deposits in intrusions evolved from
syenitic residual magmas after large fraction melting of mantle
(Boily and Williams-Jones, 1994; Marks et al., 2004) and the
extreme concentrations of incompatible elements at the [limaussaq
complex demand that the processes of fractional melting, fluid
transport and fractional crystallisation were capable of scavenging
and concentrating trace components of the mantle on a very large
scale (Upton et al., 2013). Thus it appears that multiple evolutionary
routes exist to develop REE ore deposits after melting of a

metasomatised mantle, which we can consider as a continuum
between the following possible end member scenarios:

o Small fraction melts of metasomatised mantle concentrate REE
in the parental magma, which may be sufficiently volatile-rich
to readily exsolve a fluid phase that may cause further con-
centration of the REE (carbonatite-related deposits).

e Large fraction magmas of enriched mantle generate parental
magmas in which the REE signature is more diffuse and that
require extreme fractional crystallisation to concentrate the
REE (alkali syenite-related deposits).

In carbonatites, REE mineral formation usually takes place at the
time of emplacement of the carbonatite, however, REE minerals
formed by purely igneous processes are rare. The bastndsite-
bearing carbonatite at Mountain Pass has been proposed as
magmatic owing to its igneous textures (Mariano, 1989; Castor,
2008) and to experiments that produced a hydroxyl analogue of
bastndsite from a Mountain Pass-like magma composition (Wyllie
et al., 1996). Igneous rock textures and mineral assemblages in
unweathered carbonatite from drill core at Mount Weld (Fig. 9) can
be grouped into those unaffected by subsequent processes and
those that have clearly been affected by hydrothermal fluids. Most
other carbonatites have evidence of sub-solidus formation and
alteration of REE minerals, although there may have been precursor
late-stage magmatic minerals, such as burbankite (Wall and
Mariano, 1996; Zaitsev et al., 1998), usually forming in pegmatoid
transition environments. Carbonatites that contain evidence of
rapid eruption form the mantle, e.g. mantle xenoliths, have low REE
contents (Woolley and Church, 2005). Magmatic processes are
required in order to build up REE concentrations in the magma to
levels where they may precipitate REE minerals or exsolve REE-
bearing fluids that can then precipitate REE minerals. The two
main candidates for this are fractionation or immiscibility. The
build-up of REE in magmas during fractionation depends on which
rock forming minerals are produced and their partition coefficients.
Calcite, dolomite and apatite are the key minerals plus silicates such
as forsterite, diopside, phlogopite, with magnetite and accessory
minerals such as pyrochlore and monazite. Apatite in carbonatite is
reviewed by Hogarth (1989). Partition coefficients for apatite in
carbonatite melts have been determined by Klemme and Dalpe
(2003) and Hammouda et al. (2010). Fluorapatite can host signifi-
cant mass % REE in carbonatite and is probably the most important
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Figure 9. Comparison of magmatic and hydrothermal mineral assemblages and rock textures in QEMSCAN® false-colour images of unweathered carbonatite from drill core beneath
the lateritic Mount Weld REE deposits. (A) Magmatic carbonatite with minimal alteration: the mineral assemblage is dominated by calcite, magnetite, olivine and apatite. (B)
Hydrothermally altered carbonatite cross-cut by sulphide-bearing vein: apatite is more abundant and iron-rich phlogopite replaces magnetite and olivine in the secondary mineral
assemblage, in which REE minerals are dominated by synchysite/parisite. QEMSCAN®: quantitative evaluation of minerals using scanning electron microscopy (Details of the

analytical technique are reviewed by Haberlah et al,, 2011, and Knappett et al., 2011).

mineral in controlling fractionation of REE. Immiscible separation
of carbonate and silicate melts has been discounted as a mechanism
to produce REE-rich carbonatite by Veksler et al. (2012), although
work by Martin et al. (2013), in highly alkaline hydrous melts shows
higher REE concentrations in the carbonate melt.

In general syenite is an evolved alkaline igneous rock, the
product of fractionation from an alkaline olivine basalt precursor,
ultimately derived from decompression of the underlying mantle
(e.g. Upton et al., 2003). Fractionation takes mantle melts, some of
which may be relatively enriched in incompatible elements such as
REE, and concentrates those elements further in the residual melt.
Fractionation of such basalt leads to syenite and nepheline syenite,
rocks dominated by alkali feldspar and feldspathoid. Some REE
prospects (such as Motzfeldt, South Greenland, McCreath et al.,
2013) are hosted by pyrochlore syenite in which LREE substitutes
for Ca in the pyrochlore, presumably the result of fractionation of an
incompatible element-rich magma. In many large REE deposits
hosted by silicate rocks, it is inferred that the impermeable roof
zones impeded the loss of volatiles, such that fractionation pro-
duced residua which were progressively more volatile rich. Such
magmas fractionate beyond syenite to nepheline syenite and, if the
conditions allow, further still to peralkaline rocks dominated by
alkali mafic minerals (aegirine or arfvedsonite), feldspathoids
(usually nepheline and/or sodalite), feldspar (end member Na- and
K-feldspar) and a characteristic Ti- or Zr-silicate such as eudialyte.
These most evolved rocks have TREE contents in the % levels, with
LREE present in apatite-type structures (such as britholite) and
HREE in zirconosilicates such as eudialyte. Examples include Ili-
maussaq, South Greenland; Nechalacho, Canada; and Lovozero and
Khibina in Russia. Agpaitic rocks are also enriched in other rare
metals such as Zr, Nb, Ta, Li, making them high-value multi-
element deposits.

4.5. Hydrothermal processes

Both carbonatite and evolved nepheline syenite have signifi-
cant hydrothermal overprints ranging from post-magmatic fluids

(e.g. McCreath et al.,, 2013) to large scale, meteoric convective
systems (e.g. Ambar Dongar — Palmer and Williams-Jones, 1996),
which enhance or locally remobilise REE. Experimental data on
the solubility of REE minerals are relatively limited, but in general
REE mineral solubility is enhanced by low pH, high salt concen-
tration (ligand availability) and ligand type (Haas et al., 1996). The
effects of temperature (T) may be variable. Monazite has retro-
grade solubility at low pH (e.g. Wood and Williams-Jones, 1994;
Poitrasson et al., 2004; Cetiner et al., 2005), but solubility in-
creases with T at neutral to basic pH (Pourtier et al., 2010). Ligand
availability and solute concentration also play a key role, with
important REE>* complex ions formed with hydroxide, chloride or
fluoride, and possibly sulphate and carbonate, depending on so-
lution composition and pH (Wood, 1990; Haas et al., 1995). High T
experimental data are now available for a number of important
ligands, including CI- and F~ (Gammons et al., 1996; Migdisov
et al, 2009), and to some extent SOF~ (Migdisov and Williams-
Jones, 2008). These data have been used to demonstrate that,
despite high association constants for REE-F complexes, the
combination of strong association of HF at high temperatures, low
solubility products for REE-F bearing minerals and the common
buffering of F activities to very low levels because of the low
solubility of fluorite, the actual role of REE-F complexes in hy-
drothermal REE transport may be minimal. However, F~ in solu-
tion may be significant in causing deposition of REE minerals
(Williams-Jones et al., 2012). This means that chloride brines may
be the critical agent for hydrothermal REE deposit formation, with
a possible role for other ligands (e.g. SOZ~) in less common or
more extreme environments.

Bayan Obo perhaps represents the clearest example of hydro-
thermal processes in a carbonatite related REE deposit, although
details of fluid circulation stages have been obscured by multiple
stages of overprinting and metamorphism. The fluids responsible
were shown to be variably saline, aqueous-carbonic fluids; Na-rich
brines (up to 15 wt.% NaCl eq.); aqueous-carbonic brines which
evolved to halite saturated brines and CO,-rich fluids via immis-
cibility; and low T (<200 °C), low salinity fluids, possibly of
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meteoric derivation that were responsible for the Ba-alteration of
the ores (Smith and Henderson, 2000). Primary hydrothermal
mineralisation is represented by monazite-(Ce) in dolomite marble
(Chao et al,, 1997; Smith et al.,, 1999), which was subsequently
altered and overprinted by the development of basndsite-(Ce). A
subsequent, temporally distinct, stage of hydrothermal alteration
and mineralisation is indicated by aegirine-reibeckite-fluorite-
calcite-barite veins. This late hydrothermal flux clearly added to
the Nb content of the ore (Smith and Spratt, 2012), may have added
(Yang et al., 2011) and definitely remobilised REE (Smith et al.,
2000). In other less deformed, carbonatite-related deposits the
relationship between post-magmatic hydrothermal alteration and
REE mineralisation is clearer. At Bear Lodge primary REE minerals
are replaced by secondary REE fluorcarbonates, ancylite and
monazite, and variations in La/Nd ratios, the overall chondrite
normalised REE profiles and the oxygen and carbon stable isotope
systematics all indicate post-magmatic hydrothermal alteration
and the remobilisation of REE. The fluids involved range from fluids
derived from magmatic degassing, down to meteoric fluid involved
in producing a pervasive hydrothermal overprint (Moore et al.,
2015). Similar variations, and the extensive fenitised aureole,
have been interpreted in the same way at Araxa (Traversa et al.,
2001), whilst alteration has been identified as a key process in
ore formation at Mount Weld from fenitisation (Hoatson et al.,
2011), and at Mountain Pass from ore alteration mineral assem-
blages (Olson et al., 1954; Castor, 2008). At Ambar Dongar weakly
altered carbonatites contain florencite, alongside minor bastndsite
and parisite, whilst more strongly altered carbonatites contain REE
fluorcarbonates in association with barite, fluorite and quartz
(Doroshkevich et al., 2009). Initial alteration was by a CO,-CHy4
bearing S- and K-rich aqueous fluid exsolved from calciocarbona-
tite. Later fluids, exsolved at shallower intrusive levels, had
increasing Cl contents, and were responsible for formation of the
fenite aureole. This stage was overprinted Na-Cl bearing fluids of
meteoric derivation (Viladkar and Schidlowski, 2000; Williams-
Jones and Palmer, 2001) which may have mixed with magmatic
waters, and been responsible for the extensive fluoritisation of the
deposit (Palmer and Williams-Jones, 1996). Hydrothermal alter-
ation of ore is also clear at Mountain Pass, although less thoroughly
investigated. Pervasive quartz alteration can be as high as 60% of
the ore in places, mainly replacing calcite, but also barite and
bastnadsite, and talc alteration of carbonatite is associated with the
formation of allanite (Olson et al., 1954; Castor, 2008) and the
sulphide assemblage appears to be hydrothermal in origin. Hy-
drothermal effects may also have had significant effects at deposits
such as Mushgai Khudug (Baatar et al., 2013), and Mount Weld
(Hoatson et al., 2011).

Within alkali syenite (Sorensen, 1997), magmatic volatiles
contribute to the composition of later hydrothermal solutions. This
is true at all the major alkaline silicate complexes (e.g. fluoritisation
at Dong Pao; Fujii et al., 2010), but possibly the most detailed in-
vestigations of related hydrothermal processes are at Strange Lake.
Here, high temperature alteration (>350 °C) leading to the alter-
ation of aegirine to arfvedsonite is attributed to orthomagmatic
fluids (Salvi and Williams-Jones, 1990). This fluid is inferred to have
high salinity, and co-existed with an immiscible carbonic phase
which was involved in redox reactions with Fe oxides resulting in
the formation of hydrocarbons (Salvi and Williams-Jones, 2006).
This high salinity fluid was responsible for transport and enrich-
ment of Zr, Nb, Y and the REE. Further work has now suggested that
Zr was mobilised by HF and HCI-HF bearing brines, down to low
temperature (>250 °C), but the REE where dominantly mobilised
by Cl-dominated fluids at higher T (~400 °C), as chloride com-
plexes (Gysi and Williams-Jones, 2013). At Lovozero fluid inclusions
in lujavrite and other rock types are dominantly carbonic (Potter

et al., 2004) in contrast to Ilimaussaq where methane dominates
(Konnerup-Madsen and Rose-Hansen, 1982). Although hydrother-
mal overprinting in alkaline intrusions may increase the REE grade,
it can in other cases replace primary REE-bearing minerals with
intimate nm-scale intergrowths of secondary minerals that pose a
challenge for efficient extraction (McCreath et al., 2013).

4.6. Weathering effects

A number of the largest REE deposits show evidence for sig-
nificant weathering effects, and in Mount Weld, Tomtor and Dong
Pao weathering has contributed to the economic viability of the ore
by partial degradation of primary minerals and supergene enrich-
ment resulting in the concentration of REE in secondary minerals.
In general REE are leached in the oxidised zones of weathering
profiles (zones A and B; the iron crust, and the upper mottled clay
layer of laterite profiles) and redeposited in the zone of water table
fluctuation (zones B and C; lower mottled clay horizon and
saprolite of laterite profiles; e.g. Braun et al., 1993). Despite rela-
tively weak complexation of the REE at low T (Cetiner et al., 2005)
by ligands such as Cl~, the retrograde solubility of monazite under
acid conditions and possibility for high activities of carbonate and
organic ligands (Wood, 1993; Chen et al., 1998) means there is high
potential for REE mobility during weathering. Ceitner and Xiong
(2008) concluded from a model soil solution that La3* transport
would be dominated by oxalate, sulphate and carbonate species
alongside the free ion, although low solubilities were predicted on
the basis of monazite as the primary phase in the pH range from 5.5
to 8.5. The existence of soluble, primary fluorcarbonates may be a
pre-requisite for high remobilisation of the REE during weathering.
In contrast, whilst agreeing that oxalate and citrate are likely to
have the highest impact on REE mobility, Goyne et al. (2010)
concluded significant breakdown of apatite and monazite as REE
hosts.

Of the heavily weathered large to giant sized REE deposits,
Mount Weld is possibly the best studied (Duncan and Willett, 1990;
Lottermoser, 1990; Hoatson et al., 2011). The deposit consists of a
mineralogically and chemically zoned laterite profile, with a sharp,
karst-like contact with the underlying carbonatite. Above this is a
residual zone enriched in relict igneous minerals by the dissolution
of carbonates. This is in turn overlain by a supergene enriched zone,
characterised by phosphates, alumina phosphates and crandallite-
group minerals alongside Fe and Mn oxides. Very high REE con-
centrations occur in this zone and the REE are hosted in secondary
monazite which, at least in part, replaced apatite. The profile was
produced by long term leaching and redeposition by groundwater
(Lottermoser, 1990; Hoatson et al., 2011). High carbonate concen-
trations and widely varying pH contributed to the transport and
differential redeposition of the REE (Lottermoser, 1990). Similar
processes may have operated at the Dong Pao deposit (Fujii et al.,
2010), but in this case REE are mainly hosted in bastndsite-(Ce).
Lateritisation was also a critical process in the Tomtor deposit
(Kravchenko and Pokrovsky, 1995; Kravchenko et al., 1996). The
lower ore horizon is in situ weathered rock (saprolite) with a pre-
vious history of hydrothermal alteration, whilst the upper ore ho-
rizon is a lacustrine placer deposit consisting of pyrochlore,
phosphates and alumina-phosphates of the REE (Kravchenko and
Pokrovsky, 1995). For other deposits, weathering processes have
less of a core role in producing economic concentrations, but may
influence ore character. For example, at Bear Lodge supergene
oxidation may have contributed to increased REE grade and
modified mineralogy (deposition of ceriantite, fluorcarbonates and
secondary monazite) alongside earlier hydrothermal alteration
(Moore et al., 2015). Within the strongly weathered deposits, REE
patterns do not show major departures from those in host rocks,
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although there may be an increase in grade in some zones, and
behave anomalously due to oxidation to Ce** and retention within
the oxidised zone of weathering profiles.

5. Discussion

5.1. An assessment of the criteria defining large and giant REE
deposits

The initial definition of large and giant ore deposits here was
based on total REE content. Although all the REE are currently
undergoing some restriction in supply, global demand is focussed
on a more restricted range of elements, notably Nd, Eu, Dy, Tband Y.
These metals have lower concentrations in the crust than La and Ce,
that dominate many REE minerals (e.g. Ce 64 ppm, Nd 27 ppm, Dy
3.8 ppm, Tb 0.65 ppm; Wedepohl, 1995), providing the large and
giant size boundary classifications to 2.7 x 10° and 2.7 x 10° tonnes
for Nd, 3.8 x 10% and 3.8 x 10° tonnes for Dy and 6.5 x 10° and
6.5 x 10* tonnes for Tb; a difference of two orders of magnitude for
some elements. Considering critical REE in this way enhances the
importance of alkali syenite systems and promotes additional de-
posits into the large and giant classifications. Nepheline syenite
deposits were not until recently considered as potential resources
for the REE, mainly because the ore in nepheline syenite
deposits are minerals such as eudialyte (N315C36(Fe2+,Mn2+)3
Zr3[Si»5073](0,0H,H,0)3(0H,Cl);) and steenstrupine (Naj4Ceg
(Mn?+)(Fe>),Zr(P0O4)7Si12036(0H)2-3H20;  'Wall, 2014). Steen-
strupine-(Ce) typically has 31% Ce»03, whilst eudialyte does not
have essential REE (although it may host up to 10 wt.% REE;03)
compared to ~70% in monazite and bastndsite. The relative
enrichment in HREE (Fig. 5B), however, now makes them very
attractive targets.

Equally, the ion absorption deposits of the Longnan district, South
China, are not large or giant in size on the basis of total REE resource,
but have critical importance in terms of current global supply of the
HREE (Kynicky et al., 2012). Grades and tonnages of these deposits
are poorly defined but as they supply almost all of the current world
HREE demand, and total reserves are estimated to be higher than
8 Mt, albeit at very low grades (Chi and Tian, 2008), the scale of their
potential economic impact matches the largest magmatic and hy-
drothermal REE deposits. These are deposits developed in relatively
normal alkaline granitoids, albeit typically with a distinctive acces-
sory REE mineral assemblage, where the REE have been concen-
trated into an easily leachable form by lateritic weathering processes
(Bao and Zhao, 2008). The nature of the easily leachable form is
currently under investigation, with early studies suggesting REE
sorbed onto clay mineral surfaces but more recent data indicating
the presence of microcrystalline phases, including carbonate and
fluorcarbonate in the weathering profiles (Chi and Tian, 2008). Thus,
for individual HREE the ‘critical zone’ (i.e. the weathering zone at the
interface of geosphere, biosphere, hydrosphere and atmosphere)
may ultimately prove to be an area of generation of large and giant
sized deposits of the critical REE.

5.2. How do large to giant size REE deposits form?

With the exception of Olympic Dam and the ion adsorption
deposits all the large or giant sized REE deposits considered here
are related to igneous rocks of alkaline composition. As such,
although metamorphic and hydrothermal and weathering effects
may be critical in raising grades to commercially extractable
levels, and for altering primary mineralogy to more easily pro-
cessable forms, the key controls on the metal content of REE
deposits are the enrichment of the igneous source, and the size of
the related igneous system. Grade is a function of all the

processes that have affected a deposit, and so although grade
seems to correlate with age for carbonatite-related deposits
(Fig. 7), this may be a function of time available for metal
redistribution by metasomatic processes (e.g. Bayan Obo, Smith
et al., 2015), and/or multistage reactivation of REE enriched
mantle sources (e.g. Bayan Obo, Yang et al., 2011; Smith et al,,
2015) and even perhaps weathering (Mount Weld: Lottermoser,
1990; Tomtor: Kravchenko et al., 1996). Such an effect would be
much stronger in carbonatites where both REE minerals and host
lithologies are reactive compared to the silicate dominated alkali
syenite systems. The amount of contained metal for a given cut-
off grade, however, must be a function of how much metal was
available, which for both carbonatite and alkali syenite deposits
must relate to the size of the original intrusion.

Analysis of the reported size of the outcrops of host igneous
rocks does not provide a reliable indication of the relative vol-
umes of magma intruded because: (1) The area encompassed by
ring complexes emplaced at shallower levels in the crust (e.g.
Mushgai Khudag; Baatar et al., 2013) is not comparable to the
outcrop area for deeper erosion levels through cumulate com-
plexes (e.g. Araxa; Woolley, 1986); (2) The cumulate complexes
highlight that any reconstruction of original magma volume must
rely on assumptions regarding primitive magma composition and
the relative volume of silicate (and other) crystallisation products
observed (Moore, 2012). The absence of any reconstructions of
primary magma volumes and evolutionary paths for carbonatites
necessitates that modelling currently provides the most reliable
means of interpreting the processes operating in the mantle
source region for magmas hosting large and giant REE deposits.
Modelling of the progressive modification of mantle from the
Archaean onwards shows that Phanerozoic mantle source regions
are more metasomatised than Proterozoic mantle sources (Griffin
et al., 2003). Given preservation bias, Figs. 6 and 7 indicate that it
is likely that the less enriched Mesoproterozoic mantle produced
a similar number of large REE deposits to Phanerozoic magma-
tism. This is explained by non-Uniformitarian modelling of the
evolution of the earth that interprets Proterozoic mantle ‘over-
turns’ as the result of penetration of subducted plates through
mantle phase barriers until 0.7 Ga (Davies, 1995). A correlation
exists between the resulting plume events with various types of
mineral deposit, including I0OCG deposits (Groves et al., 2005)
and the large REE deposits generally show a similar but very
broad correlation with plumes between 1.0 and 1.7 Ga. High-
degree melting caused by slab-induced overturns would extract
REE from a larger volume of less metasomatised Precambrian
mantle, such that subsequent processes operating over extended
time intervals could cause extreme REE enrichment.

Significant volumes of alkali syenite, and ultimately agpaitic
magma, require large volumes of alkali basalt which evolve to
volatile enriched, syenitic compositions via fractional crystal-
lisation. Large volume fractional melts of enriched sources may be
generated in relation to plumes (Simonetti et al., 1998; Graham
et al., 2004; Castor, 2008) or enhanced melting of enriched
mantle sources (Simonetti et al., 1998; Kogarko et al., 2010; Upton
et al.,, 2013; Moore et al., 2015), with deep melting favouring the
development of alkaline basalt magmas. Such activity may also give
rise to zones of metasomatically enriched upper asthenosphere or
lithosphere and/or elevate geotherms such that small-fraction
melting occurs, generating carbonatite in association with frac-
tionated silicate magmas such as syenite. Enriched mantle signa-
tures are observed at Khibina and Lovozero, where sources are trace
element enriched, but with depleted mantle isotopic signatures,
suggesting mantle metasomatism as a key factor in the evolution of
the magma source (Kogarko et al., 2010).
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Contrasting mechanisms occur in the generation of the largest
carbonatite and alkali syenite related REE deposits. Carbonatites
may acquire high REE concentrations at source through lower
fraction partial melting of mantle (Bailey, 1993), by silicate-
carbonate melt partitioning during liquid-liquid immiscibility
(Lee and Wyllie, 1998), or by fractional crystallisation (e.g. Xu et al.,
2010). For the first of these the highest REE contents in the melt will
be achieved by melting of the most enriched mantle. On the basis of
isotopic evidence we have argued that the largest deposits have not
derive their REE from asthenospheric mantle, and the melting of
metasomatised lithospheric mantle may be important in the gen-
eration of the most REE enriched carbonatites. Plume activity may
still have a role in driving metasomatism by: (1) recycling deeply
subducted enriched mantle; (2) generation of carbon-rich melts
and fluids during decompression upwelling; and (3) creation of a
thermal and stress regime in the upper mantle conducive to flux of
carbon-rich metasomatic agents transporting REE and LILE into
non-convecting lithosphere. The generation of an early, trace
element enriched lithosphere at around 2900 Ma (Bell and
Blenkinsop, 1987a) and extended intervals of metasomatism
driven by plumes causing continental break up and reassembly
(Griffin et al., 2003; Casquet et al., 2012) coupled with higher heat
flows may be responsible for the concentration of REE in Protero-
zoic magmas. Smaller mantle samples caused by reduced upper
mantle heat flows could potentially reduce the REE content of
carbonatite-related primary magmas with time.

The activation of low fraction partial melting by decompression
related to repeated episodes of continental extension (Bailey, 1993),
may lead to repeated cycles of melting of metasomatically enriched
mantle sources, progressively enriching a single limited area. Such
a mechanism could be envisioned at Bayan Obo, where the original
tectonic setting of igneous activity and mineralisation has been
proposed to be a continental margin related to the break-up of the
supercontinent Columbia from 1.3 to 1.2 Ga (Hou et al.,, 2008),
possibly as a result of plume activity, with the reactivation of
metasomatically enriched mantle sources during Caledonian sub-
duction (Wang et al., 1994; Yang et al., 2011; Smith et al., 2015). The
same may also be true at Tomtor (Vladykin et al., 2014). The
extensional settings in which carbonatite magmatism can occur are
more extensive than simple continental extensions, and extend to
post-orogenic settings (Chakhmouradian et al., 2008).

Whereas the scale of magmatic activity is critical in the pro-
duction of sources for large and giant REE deposits, subsequent
igneous, hydrothermal and weathering processes are important in
the attainment of high grades. Alkaline silicate systems are very
specifically REE enriched by extreme fractional crystallisation.
Models for the generation of agpaitic magmas involve the frac-
tional crystallisation of alkali basalt or nephelinitic magmas under
conditions which prevent volatiles escaping. The retention of
volatiles allows magmas to evolve to extreme sodium concen-
trations, and to very high trace metal enrichments (Serenson,
1997). Hydrothermal activity is implicated in all deposits to
some extent. However, the final high grade of a number of de-
posits is related to hydrothermal activity, as if the final REE
mineralogy which effects whether a deposit can be economically
mined and processed. Weathering has equally played a critical
role in the concentration of the REE into a more restricted volume
at Mount Weld, Tomtor and possibly Dong Pao and Mau Xe,
consequently raising grades, the scale of the resource must relate
to the scale of the original igneous source rock. Only at Olympic
dam, where models of large scale hydrothermal circulation
leaching metal from a significant crustal volume have been pro-
posed, does the scale of hydrothermal activity appear to be a
critical factor in the final deposit formed (Oreskes and Einaudi,
1992). However, even here the involvement of alkaline mafic

magmas as a source for the REE and potentially other metals is
implied by Nd isotope data (Johnson and McCulloch, 1995), in
contrast to smaller scale and less Cu enriched IOCG type deposits
in the same district which have Nd isotope systematics suggestive
of crustally derived, granitoid metal sources (Skirrow et al., 2007).

6. Conclusions

What precisely counts as a large or giant sized ore body for the
REE is dependent on the size definition used. For total REE content,
using the size definitions of Laznicka (1999) only one deposit truly
classes as giant in size — Bayan Obo in China. However, a number of
other deposits can be classified as large in this sense, although for
many the definition of resources and reserves is tentative because
of limitations in reliable data and resource assessments. Only a few
such deposits are currently mined, but those that are not are
currently at the stage of exploration or feasibility study, or in some
cases mined for other commodities. The commonality in all these
deposits (with the possible exception of Olympic Dam) is an asso-
ciation with alkaline igneous rocks — either carbonatites, syenites
or both. The total resource of such deposits must be a function of
the size of the parent intrusion, and the availability of enriched
mantle sources. This typically limits them to areas of long term,
metasomatically enriched, lithospheric mantle. Metasomatism of
the lithospheric mantle in this context may be linked to either past
plume activity, or to mantle enriched by subduction zone pro-
cesses. The subsequent tectonic settings of melting range from
post-orogenic collapse to lithospheric extension. The formation of
enriched mantle domains, means that in some cases repeated
tectonic activity over long geological time scales may have gener-
ated REE-enriched magmas at widely separated times in spatially
restricted areas. Bayan Obo may be the key example of this, with
multiple stages of activity, alongside metamorphic and meta-
somatic reworking, being responsible for the unique scale of the
REE resource. Rare earth rich systems appear to have occurred
throughout geological time. There do, however, appear to be dis-
tinctions in the grade and tonnage of deposits that may reflect the
generation of enriched mantle domains in the Proterozoic. In-
creases in grade may also be related to enrichment of ore zones by
the potential hydrothermal and weathering processes in specific
deposits. A critical factor in what constitutes a large or giant REE
deposit is whether the grade for total REE or individual REE is used
to define the size of the resource relative to average crustal values.
The HREE are up to two orders of magnitude less abundant than Ce,
the most abundant REE. Deposits of Nd, Eu, Dy, Tb and Y in agpaitic
nepheline syenites and lateritic weathering profiles may class as
large for the individual metals, and may have economic impact in
coming years.
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