359 research outputs found

    The Relation between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Sub-millimeter, and Infrared Wavelengths

    Full text link
    Solar observations from millimeter to ultraviolet wavelengths show that there is a temperature minimum between photosphere and chromosphere. Analysis based on semi-empirical models locate this point at about 500 km over the photosphere. The consistency of these models has been tested by means of millimeter to infrared observations. In the present work, we show that variations of the theoretical radial temperature profile near the temperature minimum impacts the brightness temperature at centimeter, submillimeter, and infrared wavelengths, but the millimeter wavelength emission remains unchanged. We found a region between 500 and 1000 km over the photosphere that remains hidden to observations at the frequencies under study in this work.Comment: Accepted in Solar Physic

    Muoniated radical states in the organic semiconductor phthalocyanine

    Get PDF
    Phthalocyanine samples of ZnPc, H2Pc and CuPc were investigated by the muon spin rotation amp; 956;SR technique. In ZnPc and H2Pc, three muoniated radical states of paramagnetic origin were identified, two of which having hyperfine interactions in the range 110 150 MHz and correspondign to muonium addition at the outer benzene rings. The third state presents a smaller hyperfine interaction about 25 MHz , and is tentatively assigned to addition at bridging nitrogen atoms. CuPc has an unpaired electron from the Cu atom, which originates a diamagnetic like signal upon muonium addition. The signal exhibits two components with very different relaxation rates, corresponding to two different spatial couplings of the Cu electron with the muonium s electro

    Double-magic nature of 132Sn and 208Pb through lifetime and cross-section measurements

    Get PDF
    Single-neutron states in Sn133 and Pb209, which are analogous to single-electron states outside of closed atomic shells in alkali metals, were populated by the (Be9, Be8) one-neutron transfer reaction in inverse kinematics using particle-γ coincidence s

    Spatial distribution of PAH concentrations and stable isotope signatures (δ13C, δ15N) in mosses from three European areas – Characterization by multivariate analysis

    Get PDF
    Polycyclic aromatic hydrocarbon (PAH) concentrations and N, C stable isotope signatures were determined in mosses Hypnum cupressiforme Hedw. from 61 sites of 3 European regions: Île-de-France (France); Navarra (Spain); the Swiss Plateau and Basel area (Switzerland). Total PAH concentrations of 100-700 ng g-1, as well as δ13C values of -32 to -29‰ and δ15N values of -11 to -3‰ were measured. Pearson correlation tests revealed opposite trends between high molecular weight PAH (4-6 aromatic rings) content and δ13C values. Partial Least Square regressions explained the very significant correlations (r > 0.91, p < 0.001) between high molecular weight PAH concentrations by local urban land use (<10 km) and environmental factors such as elevation and pluviometry. Finally, specific correlations between heavy metal and PAH concentrations were attributed to industrial emissions in Switzerland and road traffic emissions in Spain

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    Phenomenology of the nMSSM from colliders to cosmology

    Full text link
    Low energy supersymmetric models provide a solution to the hierarchy problem and also have the necessary ingredients to solve two of the most outstanding issues in cosmology: the origin of dark matter and baryonic matter. One of the most attractive features of this framework is that the relevant physical processes are related to interactions at the weak scale and therefore may be tested in collider experiments in the near future. This is true for the Minimal Supersymmetric Standard Model (MSSM) as well as for its extension with the addition of one singlet chiral superfield, the so-called nMSSM. It has been recently shown that within the nMSSM an elegant solution to both the problem of baryogenesis and dark matter may be found, that relies mostly on the mixing of the singlet sector with the Higgs sector of the theory. In this work we review the nMSSM model constraints from cosmology and present the associated collider phenomenology at the LHC and the ILC. We show that the ILC will efficiently probe the neutralino, chargino and Higgs sectors, allowing to confront cosmological observations with computations based on collider measurements. We also investigate the prospects for a direct detection of dark matter and the constraints imposed by the current bounds of the electron electric dipole moment in this model.Comment: 44 pp, 10 figures; Fig.9 replaced; discussion on CP violation extended and references added; few minor additions in text about details of the cut

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
    corecore