96 research outputs found

    Impact of mass drug administration of azithromycin for trachoma elimination on prevalence and azithromycin resistance of genital Mycoplasma genitalium infection

    Get PDF
    Background Mass drug administration (MDA) of 20 mg/kg (maximum 1 g in adults) azithromycin for ocular Chlamydia trachomatis (CT) infection is a key component of the WHO trachoma elimination strategy. However, this dose may be suboptimal in Mycoplasma genitalium infection and may encourage emergence of antimicrobial resistance (AMR) to azithromycin. Objectives To determine the effect of MDA for trachoma elimination on M. genitalium prevalence, strain type and azithromycin resistance. Methods A secondary analysis of CT-negative vulvovaginal swabs from three outpatient antenatal clinics (Honiara, Solomon Islands) from patients recruited either pre-MDA, or 10 months post-MDA in two cross-sectional surveys was carried out. Swabs were tested for M. genitalium infection using Fast Track Diagnostics Urethritis Plus nucleic acid amplification assay. M. genitalium-positive samples were subsequently tested for azithromycin resistance by sequencing domain V of the 23S rRNA DNA region of M. genitalium and underwent phylogenetic analysis by dual locus sequence typing. Results M. genitalium prevalence was 11.9% (28/236) in women pre-MDA and 10.9% (28/256) 10 months post-MDA (p=0.7467). Self-reported receipt of azithromycin as part of MDA was 49.2% in women recruited post-MDA and 17.9% (5/28) in those who tested M. genitalium positive. Of samples sequenced (21/28 pre-MDA, 22/28 post-MDA), all showed a macrolide susceptible genotype. Strain typing showed that sequence types diverged into two lineages, with a suggestion of strain replacement post-MDA. Conclusion A single round of azithromycin MDA in an island population with high baseline M. genitalium prevalence did not appear to impact on either prevalence or azithromycin resistance, in contrast to reported decreased genital CT prevalence in the same population. This may be due to limitations such as sample size, including CT-negative samples only, and low MDA coverage. Further investigation of the impact of multiple rounds of MDA on M. genitalium azithromycin AMR in antibiotic experienced and naïve populations is warranted

    A phase II multi-institutional study assessing simultaneous in-field boost helical tomotherapy for 1-3 brain metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our research group has previously published a dosimetric planning study that demonstrated that a 60 Gy/10 fractions intralesional boost with whole-brain radiotherapy (WBRT) to 30 Gy/10 fractions was biologically equivalent with a stereotactic radiosurgery (SRS) boost of 18 Gy/1 fraction with 30 Gy/10 fractions WBRT. Helical tomotherapy (HT) was found to be dosimetrically equivalent to SRS in terms of target coverage and superior to SRS in terms of normal tissue tolerance. A phase I trial has been now completed at our institution with a total of 60 enrolled patients and 48 evaluable patients. The phase II dose has been determined to be the final phase I cohort dose of 60 Gy/10 fractions.</p> <p>Methods/Design</p> <p>The objective of this clinical trial is to subject the final phase I cohort dose to a phase II assessment of the endpoints of overall survival, intracranial control (ICC) and intralesional control (ILC). We hypothesize HT would be considered unsuitable for further study if the median OS for patients treated with the HT SIB technique is degraded by 2 months, or the intracranial progression-free rates (ICC and ILC) are inferior by 10% or greater compared to the expected results with treatment by whole brain plus SRS as defined by the RTOG randomized trial. A sample size of 93 patients was calculated based on these parameters as well as the statistical assumptions of alpha = 0.025 and beta = 0.1 due to multiple statistical testing. Secondary assessments of toxicity, health-related quality-of-life, cognitive changes, and tumor response are also integrated into this research protocol.</p> <p>Discussion</p> <p>To summarize, the purpose of this phase II trial is to assess this non-invasive alternative to SRS in terms of central nervous system (CNS) control when compared to SRS historical controls. A follow-up phase III trial may be required depending on the results of this trial in order to definitively assess non-inferiority/superiority of this approach. Ultimately, the purpose of this line of research is to provide patients with metastatic disease to the brain a shorter course, dose intense, non-invasive radiation treatment with equivalent or improved CNS control/survival and health-related quality-of-life/toxicity profile when compared to SRS radiotherapy.</p> <p>Trial registration</p> <p>Clinicaltrials.gov - <a href="http://www.clinicaltrials.gov/ct2/show/NCT01543542">NCT01543542</a>.</p

    Genesis of a Fungal Non-Self Recognition Repertoire

    Get PDF
    Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification

    Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage

    Get PDF
    Zika virus (ZIKV) is a mosquito-transmitted flavivirus found in both Africa and Asia. Human infection with the virus may result in a febrile illness similar to dengue fever and many other tropical infections found in these regions. Previously, little was known about the genetic relationships between ZIKV strains collected in Africa and those collected in Asia. In addition, the geographic origins of the strains responsible for the recent outbreak of human disease on Yap Island, Federated States of Micronesia, and a human case of ZIKV infection in Cambodia were unknown. Our results indicate that there are two geographically distinct lineages of ZIKV (African and Asian). The virus has circulated in Southeast Asia for at least the past 50 years, whereupon it was introduced to Yap Island resulting in an epidemic of human disease in 2007, and in 2010 was the cause of a pediatric case of ZIKV infection in Cambodia. This study also highlights the danger of ZIKV introduction into new areas and the potential for future epidemics of human disease

    Genetic Structure of Human A/H1N1 and A/H3N2 Influenza Virus on Corsica Island: Phylogenetic Analysis and Vaccine Strain Match, 2006–2010

    Get PDF
    Background: The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA) genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. [br/] Methods: Nasopharyngeal samples from 371 patients with influenza-like illness (ILI) were collected by General Practitioners (GPs) of the Sentinelles Network through a randomised selection routine. [br/] Results: Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009). Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm) strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope) model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. [br/] Conclusion: The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island

    Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice

    Get PDF
    We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD). Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80+) was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020) and serum levels of serum amyloid A3 (131%; P = 0.008) but reduced circulating adiponectin (64%; P = 0.011). In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001) and 40% (P = 0.025) respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037). HFD reduced Lactobacillus (75%; P<0.001) but increased Oscillibacter (279%; P = 0.004) in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013) and Oscillibacter (r = −0.55; P = 0.007) with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020), TNF-α (2.5-fold, P<0.001) and IL-6 mRNA levels (2.5-fold; P = 0.008) in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006) but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity

    Formation of Trans-Activation Competent HIV-1 Rev:RRE Complexes Requires the Recruitment of Multiple Protein Activation Domains

    Get PDF
    The HIV-1 Rev trans-activator is a nucleocytoplasmic shuttle protein that is essential for virus replication. Rev directly binds to unspliced and incompletely spliced viral RNA via the cis-acting Rev Response Element (RRE) sequence. Subsequently, Rev oligomerizes cooperatively and interacts with the cellular nuclear export receptor CRM1. In addition to mediating nuclear RNA export, Rev also affects the stability, translation and packaging of Rev-bound viral transcripts. Although it is established that Rev function requires the multimeric assembly of Rev molecules on the RRE, relatively little is known about how many Rev monomers are sufficient to form a trans-activation competent Rev:RRE complex, or which specific activity of Rev is affected by its oligomerization. We here analyzed by functional studies how homooligomer formation of Rev affects the trans-activation capacity of this essential HIV-1 regulatory protein. In a gain-of-function approach, we fused various heterologous dimerization domains to an otherwise oligomerization-defective Rev mutant and were able to demonstrate that oligomerization of Rev is not required per se for the nuclear export of this viral trans-activator. In contrast, however, the formation of Rev oligomers on the RRE is a precondition to trans-activation by directly affecting the nuclear export of Rev-regulated mRNA. Moreover, experimental evidence is provided showing that at least two protein activation domains are required for the formation of trans-activation competent Rev:RRE complexes. The presented data further refine the model of Rev trans-activation by directly demonstrating that Rev oligomerization on the RRE, thereby recruiting at least two protein activation domains, is required for nuclear export of unspliced and incompletely spliced viral RNA
    corecore