35 research outputs found
Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease
Potential range of impact of an ecological trap network: the case of timber stacks and the Rosalia longicorn
Although the negative impact of timber stacks on populations of saproxylic beetles is a well-known phenomenon, there is
relatively little data concerning the scale of this impact and its spatial aspect. Beech timber stored in the vicinity of the forest
can act as an ecological trap for the Rosalia longicorn (Rosalia alpina), so in this study we have attempted to determine the
spatial range of the impact of a network of timber stacks. Timber stacks in the species’ range in the study area were listed
and monitored during the adult emergence period in 2014–2016. Based on published data relating to the species’ dispersal
capabilities, buffers of four radii (500, 1000, 1600, 3000 m) were delineated around the stacks and the calculated ranges of
potential impact. The results show that the percentage of currently known localities of the Rosalia longicorn impacted by
stacks varies from 19.7 to 81.6%, depending on the assumed impact radius. The percentage of forest influenced by timber
stacks was 77% for the largest-radius buffer. The overall impact of the ecological trap network is accelerated by fragmentation
of the impact-free area. It was also found that forests situated close to the timber stacks where the Rosalia longicorn was
recorded were older and more homogeneous in age and species composition than those around stacks where the species was
absent. Such results suggest that timber stacks act as an ecological trap in the source area of the local population
Severe autogenously fecal peritonitis in ageing Wistar rats. Response to intravenous meropenem
Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice
Age-Dependent Effects of A53T Alpha-Synuclein on Behavior and Dopaminergic Function
C1 - Journal Articles RefereedExpression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8-12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway
Isolation and characterisation of discoid granules from the tegument of adult Schistosoma mansoni
Differential Gamma-Synuclein Expression in Acute and Chronic Retinal Ganglion Cell Death in the Retina and Optic Nerve
Age-Dependent Effects of A53T Alpha-Synuclein on Behavior and Dopaminergic Function
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway
