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Abstract

Background: Gamma-synuclein is a member of the synuclein family of cytoplasmic, predominantly neuron-specific
proteins. Despite numerous evidences for the importance of gamma-synuclein in the control of monoamine
homeostasis, cytoskeleton reorganization and chaperone activity, its role in the regulation of cognitive behavior still
remain unknown. Our previous study revealed that gamma-synuclein knockout mice are characterized by high
habituation scores. Since a number of processes including spatial memory of the environment may affect
habituation, in the present study we have carried out behavioral evaluation of spatial and working memory in
gamma-synuclein knockout mice.

Results: Inactivation of gamma-synuclein gene led to the improvement of working memory in mice as revealed by
passive and active avoidance tests. At the same time behavioral tests, designed to assess spatial learning and
memory (Morris water maze and Object location tests), showed no differences between gamma-synuclein
knockouts and wild type mice.

Conclusions: These findings indicate that young mice with targeted inactivation of gamma-synuclein gene have
improved working memory, but not spatial learning and memory. Our results suggest that gamma-synuclein is
directly involved in the regulation of cognitive functions.
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Background
Gamma(γ)-synuclein – is a member of the synuclein
family of small cytoplasmic acidic, predominantly
neuron-specific proteins [1]. It has been speculated that
in the nervous system γ-synuclein is involved in modula-
tion of monoamine transporters [2,3], cytoprotection
[4,5], chaperone activity [6], microtubule regulation and
microtubule mediated organelle trafficking [7]. However,
the exact mechanisms and consequences of this involve-
ment are to be resolved. In cooperation with other
members of the family γ-synuclein plays role in regula-
tion of dopaminergic neurotransmission [8,9]. Changes
of γ-synuclein expression in peripheral tissues has been
linked with metabolic and oncological diseases [10,11].
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Our previous study showed that γ-synuclein knockout
mice display low levels of anxiety-like behavior, high ex-
ploratory activity and enhanced habituation [12]. It is
well documented that cognitive abilities correlate with
the level of exploratory activity and habituation scores in
rodents [13,14]. These data allow to suggest that γ-
synuclein may be one of the factors affecting cognitive
function. Cognitive dysfunction is one of the most typ-
ical characteristics in various neurodegenerative patholo-
gies such as Alzheimer’s and Parkinson’s disease [15,16].
Since γ-synuclein has been implicated in hippocampal
axon pathology in Parkinson’s disease [17]. Specific
changes of γ-synuclein expression in retina and optical
nerve have been reported in Alzheimer’s disease patients as
well as in patients with glaucoma [18,19]. Overexpression
of γ-synuclein induces neurodegeneration in animal
models [20,21]. The first evidence of a possible link
between the expression of γ-synuclein and choline
acetyltransferase – an important component of cholinergic
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Figure 2 Passive avoidance test. Bar charts show mean values+S.
E.M before (pre-training) and 24 hours after (post-training) step-
down latency training (WT n=7; γ-КО n=9). Asterisks and grids
indicate statistically significant differences between the values before
and after training within the group (* – p<0.05, ** – p<0.01,
Wilcoxon T-test; ## – p<0.01, Mann–Whitney U-test).
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neurotransmission have been received [22]. At the same
time, cholinergic neurotransmission is the key component
of cognitive process [23,24]. However, there are no data
available on the influence of γ-synuclein on learning and
memory.
We hypothesized that γ-synuclein might be involved

in some aspects of learning and memory processes in
experimental animals. To test this, in the present work,
we evaluated learning abilities of mice with target inacti-
vation of γ-synuclein gene in the behavioral tasks that
require intact working and spatial memory.

Results
Rod suspension test
On the first stage of the work we examined locomotor
abilities of the experimental animals. We assessed the
grip strength, which is a critical parameter for swimming
task as well as for the other tests which require motor
activity. In this test the γ-КО group did not show
(p>0.05; Mann–Whitney U-test) significant differences
in performance from the group of WT mice (Figure 1).

Passive avoidance test
Baseline step down latencies have shown no significant
differences between groups at the pre-training stage. In
γ-КО mice we observed 7.8-fold (T=0, p=0.008;
Wilcoxon T-test, hereinafter) increase in step-down la-
tency after training versus 3.9-fold (T=0, p=0.027) in-
crease in WT animals (Figure 2). Thus, γ-KO showed an
increase in step-down latency by 168% (U=4.5, p=0.006;
Mann–Whitney U-test) compared to the WT mice.

Active avoidance test
Mice were trained for 8 days. The results of these exper-
iments expressed as the number of successful avoidance
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Figure 1 Rod suspension test. Bar charts show mean values+S.E.M
(WT n=10; γ-КО n=12). No significant differences were detected
(Mann–Whitney U-test).
responses over the number of the trials per day are
shown in Figure 3. Starting from the 4th day γ-KO
displayed better dynamics of learning. γ-KO mice made
a significantly greater number of avoidance responses:
on Day 4–3 fold (U=8, p=0.037; Mann–Whitney U-test,
hereinafter), Day 5–4.3-fold (U=7, p=0.015), Day 6–2.4-
fold (U=2, p=0.002), Day 7–3.9-fold (U=1.5, p=0.002) and
Day 8–2.3-fold (U=6, p=0.01) compared to WT mice.

Morris water maze
To assess spatial learning, mice were tested in the Mor-
ris water maze. The results of the test are given in
Figure 4. γ-KO and WT mice were not significantly dif-
ferent in all phases of water maze training, except for
the training Day 4 when γ-KO mice showed 50% (U=9.5,
p=0.03; Mann–Whitney U-test) lower escape latencies
compared to WT animals.

Object location test
On day 1 (the acquisition trial) WT- and γ-КО mice
time spent equal time investigating both objects (data
not shown). On day 2 (test) both WT and γ-КО mice ex-
plored the object that was located in a new position for
a significantly longer time than the other object (p<0.05;
Mann–Whitney U-test).
γ-КО mice explored the displaced object 1.67 times

longer (T=0; p=0.03; Wilcoxon T-test, hereinafter), than
the object in familiar location. WT mice explored the
displaced object 1.76 times longer (T=0; p=0.023), than
object in familiar location (Figure 5A). During the test
the γ-КО and WT groups showed the same (p>0.05) dis-
crimination ratio: 0.277 and 0.252 for γ-КО and WT
groups respectively (Figure 5B).



0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

le
ar

ni
ng

 c
oe

ffi
ci

en
t

day of learning

WT

γ-KO*

*

**
*

**

Figure 3 Active avoidance test. The curves show mean values±S.E.M (WT n=7; γ-КО n=9). Data are presented as a learning coefficient, being
the number of successful attempts (avoidance responses) divided by the total number of transitions. Asterisks indicate statistically significant
differences between the groups (* – p<0.05, ** – p<0.01, Mann–Whitney U-test).

Kokhan et al. BMC Neuroscience 2013, 14:53 Page 3 of 7
http://www.biomedcentral.com/1471-2202/14/53
Discussion
To analyze locomotor abilities of experimental animals,
we estimated the grip strength. Our study found no sig-
nificant differences of the motor functions in the knock-
out mice, which is consistent with previously published
data obtained in different motor tasks [12]. Intact grip
strength by the knockouts suggests that muscle tone is
not impaired in these mice.
We have shown that young mice with the target

inactivation of γ-synuclein gene are characterized high
working-memory capacity, but have no alterations in
spatial learning and memory. Our previous study had re-
vealed that behavioral phenotype of γ-KO mice can be
characterized by low level of anxiety and enhanced ha-
bituation. These data can explain the improvement of
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Figure 4 Morris water maze. The curves show mean values±S.E.M (WT n
reach the platform during each daily session. Asterisks indicate statistically
U-test).
learning in the passive and active avoidance models,
used in the current investigation.
At the moment molecular and biochemical basis of

the memory improvement in passive and active avoidance
tests in γ-KO mice is not well understood. Several hypoth-
eses can be assumed. Interestingly, inactivation of the ex-
pression of highly homologous to γ-synuclein, α-synuclein
protein produces partially opposing phenotype – working
and spatial memory impairment in adult mice [25]. How-
ever in spite of high homology in the amino acid primary
sequence α-synuclein and γ-synuclein proteins differ in
their secondary structure: γ-synuclein has an increased α-
helical propensity in the amyloid-forming region (NAC-
region) [26] which is involved in trafficking of monoamine
transporters [3]. We can suggest that variations in the
4 5
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=7, γ-КО n=6). Latency (s) is the average (of four trials) time required to
significant differences between the groups (*– p<0.05, Mann–Whitney
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Figure 5 Object location test. Bar charts show mean values+S.E.M (WT n=7, γ-КО n=8). A – the total exploring time of familiar and displaced
object, s. B – the discrimination ratio which was calculated as described in the text. Asterisks indicate statistically significant differences between
the access value within the group (* – p<0.05, Wilcoxon T-test).
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secondary structure are responsible for the opposite ef-
fects of α- and γ-synuclein gene knockout on expression
of dopamine transporter (DAT) in the brain [27], that can
in turn affect their cognitive ability [28]. Moreover, inacti-
vation of the gene expression of α- and γ-synuclein has
opposite effects on the emotional status of animals
[12,29,30], which may also be reflected in the observed
changes in cognitive abilities. It has been shown previ-
ously using the same line of knockout mice that
inactivation of γ-synuclein gene alone does not affect
expression of α-synuclein mRNA or protein in neural
tissue [31], therefore our results present a clear effect of
γ-synuclein’s inactivation.
It is also possible that in the absence of γ-synuclein a

general mechanism of synaptic vesicle turnover and
neurotransmitter release are perturbed to the degree that
does not noticeably alter animal physiology but affects
certain types of behaviour. This idea is consistent with
more pronounced changes in neurotransmission ob-
served in α/γ-synuclein double knockout comparing to
α-synuclein knockout mice [8] and in triple synuclein
knockout comparing to α/β-synuclein double knockout
mice [32-34].
γ-Synuclein inactivation did not affect spatial learning

in the Morris water maze although γ-synuclein is highly
expressed in the brain areas involved in spatial learning
[35] and its inactivation was shown to cause develop-
mental deficit in the number of dopamine neurons in
the midbrain [27,31] – an essential component for a
water maze cued task learning [36]. We also did not re-
veal alterations in spatial memory of γ-KO mice. The
most obvious explanation for this fact can be based on
different strategies used for the platform search. “Route
navigation” strategy probably allows γ-KO mice to use
their high performing working memory and thus com-
pensate the deficient spatial memory which is critical in
«locale navigation» strategy [37,38]. This phenomenon
as well as enhancement of working memory in γ-KO
compared to WT mice needs further investigation.
Thus, our data provide the first evidence that γ-

synuclein may be the important component of learning
process which primarily based on the functioning of
working memory.

Conclusions
Inactivation of γ-synuclein gene leads to improvement of
working memory capacity, but not to change spatial
memory and learning. Our data provide the first evi-
dence that γ-synuclein plays an important role in learn-
ing process that is primarily based on the functioning of
working memory.

Methods
Ethical note
The study was approved by the ethical committee of the
Institute of Physiologically Active Compounds of RAS,
the protocol number 12/12. All methods used were in
compliance with the European Communities Council
Directive of 24 November 1986 (86/609/EEC).

Animals
γ-Synuclein homozygous knockout mice on С57BL/6J
genetic background were obtained from Cardiff University
Transgenic Animal Unit and characterized previously
[39]. Briefly, the targeted inactivation of gamma-synuclein
transcription was induced through deletion of exons I, II,
and III and promoter region of the gene. The control ani-
mals with no genome modifications (WT), and the mice
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with targeted null mutation of the gene encoding γ-
synuclein (γ-КО), descended from the common heterozy-
gous ancestors С57BL/6J (Charles River). Genotyping was
carried out as described previously [31]. WTand γ-KO co-
horts were housed individually in the same conditions on
a 12 h light/dark cycle. The mice had free access to food
and water and were maintained at the temperature of 19–
21°C and 50% humidity. In all the experiments 3-month
male mice (20–23 g) were used.

Behavioral tests
All behavioral tests were performed during the light
phase of the cycle. The interval between the behavioral
tests was 2 days. Tests were performed in the following
order: rod suspension, object location test, passive avoid-
ance test, Morris water maze and after that – active
avoidance test.

Rod suspension
Animals are hung by their front paws from a rod 0.7 cm
diameter, suspended 20 cm above the ground. The rod is
3 cm in length and terminated on the plastic walls. La-
tency to drop from the rod (as a criterion of grip
strength) is recorded [40]. The experiment was performed
during two consecutive days. On the first day the animals
were given an opportunity to get acquainted with the test:
a mouse was helped to climb up the rod, and in case of
the fall in less than two minutes it was put on the rod
again (not more than 3 attempts were given). When the
mouse managed to stay on the rod for a longer time, it
was not taken from there until it falls.. The test was re-
peated after 24 hours with one attempt given and the la-
tency to drop from the rod was recorded.

Passive avoidance test
We used a step-down passive avoidance test, which
consisted of a Plexiglas cage (25 × 25 × 45 cm) with a
grid floor and a platform (6 × 6 × 1.2 cm) in the center.
During the training session, mice were placed on the
platform and covered with a beaker. After 35 seconds
the glass was removed and the latency to step down with
all four paws was measured. Immediately after stepping
down on the grid, the animals received an electric shock
(80V sinusoidal voltage). Retention test sessions were
carried out 24 h after training. Each mouse was placed
on the platform and the step-down latency was mea-
sured in the absence of electric foot shocks. Step-down
latency was used as a measure of memory retention [41].
A cut-off time of 120 sec was set.

Active avoidance test
The test was performed as described before [25]. Two-
way shuttle avoidance begins when a mouse is placed
into one of the two equal compartments of the shuttle-
box. The compartments have independently controlled
electrified grid floors and illumination. Each trial is sepa-
rated by 10 sec and consists of a 6-sec light-on that is
followed by unipolar square electric impulses (30 V, 100
Hz) through the grid in the compartment where the
mouse is located. Both the light and foot shock are ter-
minated when the animal crosses to the alternate cham-
ber. We used 5 trials a day during the Days 1–2 and 15
trials – during the Days 3–5. Successful avoidances con-
sist of the trials where the mouse crosses to the adjacent
chamber following the onset of the light, but before the
foot shock.

Morris water maze test
A standard Morris water maze test was carried out in a
pool (70 cm in diameter) of water at 22–23°C. An escape
platform 6 cm in diameter was placed 0.5 cm below the
surface of the water in the middle of one of the four
quadrants of the pool. The platform and pool was black
with anti-glare coating, which together with shadowless
lamp lighting creates the effect of an invisible platform
which is hidden under water. As visual cues we used 3
illuminated paper-figures fixed on the walls. Mice were
placed into the tank, facing the wall of the pool, and
were allowed to navigate the pool in search of the escape
platform for a maximum of 60 s. If an animal failed to
locate the platform within 60 s during the first training
day, it was guided to the platform by the experimenter.
The start points used for each trial varied. The time to
reach the escape platform was recorded, and the animals
were permitted 30 s to rest on the platform before re-
moval from the tank [42]. Mice were tested during 5
days on 4 daily trials which were then averaged.

Object location test
The test was performed as described before [43] with some
modifications. Mice were placed into a gray Plexiglas
open-field box (40 cm wide×35 cm deep×16 cm high).
Brown glass identical vials (5 cm in height×3 cm in diam-
eter) were used as objects. The illumination was 60 lux in
the center of box. The acquisition trial: mice were intro-
duced to two identical objects located within the open field
arena for 5 min. After a delay of 24 hours mice were intro-
duced to the same arena but one of the objects was moved
to a new location. The time the mouse spent in exploring
each object was recorded for 5 min. The object-location
discrimination ratio was used as a criterion of spatial
memory [43,44] and calculated as (T1-T2)/(T1+T2), where
T1 - the time spent by the animal exploring the new-
located object, T2 – the old-located object.

Statistical analysis
Standard data processing was performed with Statistica
8 software (StatSoft Inc., USA). Depending on normality
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verified using Shapiro-Wilk’s W-test, either t-test for
dependent or independent samples, or non-parametric
Mann–Whitney U-test for independent groups and
Wilcoxon T-test for dependent samples were used.

Abbreviations
γ-КО: γ-synuclein knockout mice; WT: Wild type mice with no genome
modifications.
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