1,269 research outputs found

    Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    Get PDF
    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment.METHODS: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested.RESULTS: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed.CONCLUSIONS: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade

    Whole-genome sequencing of nine esophageal adenocarcinoma cell lines.

    Get PDF
    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines-ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4-all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC.This work was funded by an MRC Programme Grant to R.C.F. and a Cancer Research UK grant to PAWE. The pipeline for mutation calling is funded by Cancer Research UK as part of the International Cancer Genome Consortium. G.C. is a National Institute for Health Research Lecturer as part of a NIHR professorship grant to R.C.F. AGL is supported by a Cancer Research UK programme grant (C14303/A20406) to Simon Tavaré and the European Commission through the Horizon 2020 project SOUND (Grant Agreement no. 633974)

    On Semiclassical Limits of String States

    Get PDF
    We explore the relation between classical and quantum states in both open and closed (super)strings discussing the relevance of coherent states as a semiclassical approximation. For the closed string sector a gauge-fixing of the residual world-sheet rigid translation symmetry of the light-cone gauge is needed for the construction to be possible. The circular target-space loop example is worked out explicitly.Comment: 12 page

    Mindfulness-based interventions in epilepsy: a systematic review

    Get PDF
    Mindfulness based interventions (MBIs) are increasingly used to help patients cope with physical and mental long-term conditions (LTCs). Epilepsy is associated with a range of mental and physical comorbidities that have a detrimental effect on quality of life (QOL), but it is not clear whether MBIs can help. We systematically reviewed the literature to determine the effectiveness of MBIs in people with epilepsy. Medline, Cochrane Central Register of Controlled Trials, EMBASE, CINAHL, Allied and Complimentary Medicine Database, and PsychInfo were searched in March 2016. These databases were searched using a combination of subject headings where available and keywords in the title and abstracts. We also searched the reference lists of related reviews. Study quality was assessed using the Cochrane Collaboration risk of bias tool. Three randomised controlled trials (RCTs) with a total of 231 participants were included. The interventions were tested in the USA (n = 171) and China (Hong Kong) (n = 60). Significant improvements were reported in depression symptoms, quality of life, anxiety, and depression knowledge and skills. Two of the included studies were assessed as being at unclear/high risk of bias - with randomisation and allocation procedures, as well as adverse events and reasons for drop-outs poorly reported. There was no reporting on intervention costs/benefits or how they affected health service utilisation. This systematic review found limited evidence for the effectiveness of MBIs in epilepsy, however preliminary evidence suggests it may lead to some improvement in anxiety, depression and quality of life. Further trials with larger sample sizes, active control groups and longer follow-ups are needed before the evidence for MBIs in epilepsy can be conclusively determined

    Adjuvant gemcitabine and concurrent radiation for patients with resected pancreatic cancer: a phase II study

    Get PDF
    The safety and efficacy of gemcitabine and concurrent radiation to the upper abdomen followed by weekly gemcitabine in patients with resected pancreatic cancer was determined. Patients with resected adenocarcinoma of the pancreas were treated with intravenous gemcitabine administered twice-weekly (40 mg m−2) for 5 weeks concurrent with upper abdominal radiation (50.4 Gy in 5½ weeks). At the completion of the chemoradiation, patients without disease progression were given gemcitabine (1000 mg m−2) weekly for two cycles. Each cycle consisted of 3 weeks of treatment followed by 1 week without treatment. Forty-seven patients were entered, 46 of whom are included in this analysis. Characteristics: median age 61 years (range 35–79); 24 females (58%); 73% stage T3/T4; and 70% lymph node positive. Grade III/IV gastrointestinal or haematologic toxicities were infrequent. The median survival was 18.3 months, while the median time to disease recurrence was 10.3 months. Twenty-four percent of patients were alive at 3 years. Only six of 34 patients with progression experienced local regional relapse as a component of the first site of failure. These results confirm the feasibility of delivering adjuvant concurrent gemcitabine and radiation to the upper abdomen. This strategy produced good local regional tumour control

    The remnants of galaxy formation from a panoramic survey of the region around M31

    Full text link
    In hierarchical cosmological models, galaxies grow in mass through the continual accretion of smaller ones. The tidal disruption of these systems is expected to result in loosely bound stars surrounding the galaxy, at distances that reach 1010010 - 100 times the radius of the central disk. The number, luminosity and morphology of the relics of this process provide significant clues to galaxy formation history, but obtaining a comprehensive survey of these components is difficult because of their intrinsic faintness and vast extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We detect stars and coherent structures that are almost certainly remnants of dwarf galaxies destroyed by the tidal field of M31. An improved census of their surviving counterparts implies that three-quarters of M31's satellites brighter than MV<6M_V < -6 await discovery. The brightest companion, Triangulum (M33), is surrounded by a stellar structure that provides persuasive evidence for a recent encounter with M31. This panorama of galaxy structure directly confirms the basic tenets of the hierarchical galaxy formation model and reveals the shared history of M31 and M33 in the unceasing build-up of galaxies.Comment: Published in Nature. Supplementary movie available at https://www.astrosci.ca/users/alan/PANDAS/Latest%20news%3A%20movie%20of%20orbit.htm

    The Beta Ansatz: A Tale of Two Complex Structures

    Get PDF
    Brane tilings, sometimes called dimer models, are a class of bipartite graphs on a torus which encode the gauge theory data of four-dimensional SCFTs dual to D3-branes probing toric Calabi-Yau threefolds. An efficient way of encoding this information exploits the theory of dessin d’enfants, expressing the structure in terms of a permutation triple, which is in turn related to a Belyi pair, namely a holomorphic map from a torus to a P1 with three marked points. The procedure of a-maximization, in the context of isoradial embeddings of the dimer, also associates a complex structure to the torus, determined by the R-charges in the SCFT, which can be compared with the Belyi complex structure. Algorithms for the explicit construction of the Belyi pairs are described in detail. In the case of orbifolds, these algorithms are related to the construction of covers of elliptic curves, which exploits the properties of Weierstraß elliptic functions. We present a counter example to a previous conjecture identifying the complex structure of the Belyi curve to the complex structure associated with R-charges

    Gemcitabine twice weekly as a radiosensitiser for the treatment of brain metastases in patients with carcinoma: a phase I study

    Get PDF
    Conventional treatment for brain metastases (BM) is whole-brain radiotherapy (WBRT). Efficacy is poor. It might be increased by a potent radiosensitiser such as gemcitabine which is believed to cross the disrupted blood–brain barrier. Primary objective of this study was to determine the maximum tolerated dose (MTD) of twice weekly gemcitabine given concurrently with WBRT. Patients with BM from carcinoma were included. The dose of WBRT was 30 Gys (10 daily fractions). Gemcitabine was given 2–4 h prior to WBRT on days 1 and 8 for the first cohort of patients and then on days 1, 4, 8 and 11. Starting dose was 25 mg m−2, escalated by 12.5 mg m−2 increments. At least three patients were included per level. Dose limiting toxicity (DLT) was defined as grade 4 haematological or grade ⩾3 nonhaematological toxicity. A total of 25 patients were included; 74% had a PS 1 (ECOG). In all, 23 had non-small-cell lung cancer, six colorectal, four breast, two renal cell and one oesophageal carcinoma. A total of 92% had concurrent extracranial disease. Six had single BM, 13 had two or three BM and six multiple. Up to 50 mg m−2 (level 4) no DLT was observed. At 62.5 mg m−2, one out of six patients developed DLT (thrombocytopenia-bleeding). The next dose level (75 mg m−2) was abandoned after grade 4 bone marrow toxicity (fatal neutropenic sepsis) was seen in one out of two patients. So that the dose of 50 mg m−2 will be taken forward for further study
    corecore