106 research outputs found

    Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions.

    Get PDF
    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.This work was supported by the National Science Foundation through Grant No. ACI-1642336 (to F.P. and A.W.G.). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1548562. J.B. is grateful for a Heisenberg professorship funded by the DFG (No. Be3264/11-2). E.Sz. would like to acknowledge the support of the Peterhouse Research Studentship and the support of BP International Centre for Advanced Materials (ICAM). M.C. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 677013-HBMAP). G.I. acknowledges funding from the Fondazione Zegn

    Precision of genetic parameters and breeding values estimated in marker assisted BLUP genetic evaluation

    Get PDF
    In practical implementations of marker-assisted selection economic and logistic restrictions frequently lead to incomplete genotypic data for the animals of interest. This may result in bias and larger standard errors of the estimated parameters and, as a consequence, reduce the benefits of applying marker-assisted selection. Our study examines the impact of the following factors: phenotypic information, depth of pedigree, and missing genotypes in the application of marker-assisted selection. Stochastic simulations were conducted to generate a typical dairy cattle population. Genetic parameters and breeding values were estimated using a two-step approach. First, pre-corrected phenotypes (daughter yield deviations (DYD) for bulls, yield deviations (YD) for cows) were calculated in polygenic animal models for the entire population. These estimated phenotypes were then used in marker assisted BLUP (MA-BLUP) evaluations where only the genotyped animals and their close relatives were included

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Characterisation of proteins in excretory/secretory products collected from salmon lice, Lepeophtheirus salmonis

    Get PDF
    Background  The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic copepod which feeds on the mucus, skin and blood of salmonid fish species. The parasite can persist on the surface of the fish without any effective control being exerted by the host immune system. Other ectoparasitic invertebrates produce compounds in their saliva, excretions and/or secretions which modulate the host immune responses allowing them to remain on or in the host during development. Similarly, compounds are produced in secretions of L. salmonis which are thought to be responsible for immunomodulation of the host responses as well as other aspects of crucial host-parasite interactions.  Methods  In this study we have identified and characterised the proteins in the excretory/secretory (E/S) products of L. salmonis using LC-ESI-MS/MS.  Results  In total 187 individual proteins were identified in the E/S collected from adult lice and pre-adult sea lice. Fifty-three proteins, including 13 serine-type endopeptidases, 1 peroxidase and 5 vitellogenin-like proteins were common to both adult and pre-adult E/S products. One hundred and seven proteins were identified in the adult E/S but not in the pre-adult E/S and these included serine and cysteine-type endopeptidases, vitellogenins, sphingomyelinase and calreticulin. A total of 27 proteins were identified in pre-adult E/S products but not in adult E/S.  Conclusions  The assigned functions of these E/S products and the potential roles they play in host-parasite interaction is discussed

    Budd-Chiari Syndrome: Long term success via hepatic decompression using transjugular intrahepatic porto-systemic shunt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Budd-Chiari syndrome (BCS) generally implies thrombosis of the hepatic veins and/or the intrahepatic or suprahepatic inferior vena cava. Treatment depends on the underlying cause, the anatomic location, the extent of the thrombotic process and the functional capacity of the liver. It can be divided into medical treatment including anticoagulation and thrombolysis, radiological procedures such as angioplasty and transjugular intrahepatic porto-systemic shunt (TIPS) and surgical interventions including orthotopic liver transplantation (OLT). Controlled trials or reports on larger cohorts are limited due to rare disease frequency. The aim of this study was to report our single centre long term results of patients with BCS receiving one of three treatment options i.e. medication only, TIPS or OLT on an individually based decision of our local expert group.</p> <p>Methods</p> <p>20 patients with acute, subacute or chronic BCS were treated between 1988 and 2008. Clinical records were analysed with respect to underlying disease, therapeutic interventions, complications and overall outcome.</p> <p>Results</p> <p>16 women and 4 men with a mean age of 34 ± 12 years (range: 14-60 years) at time of diagnosis were included. Myeloproliferative disorders or a plasmatic coagulopathy were identified as underlying disease in 13 patients, in the other patients the cause of BCS remained unclear. 12 patients presented with an acute BCS, 8 with a subacute or chronic disease. 13 patients underwent TIPS, 4 patients OLT as initial therapy, 2 patients required only symptomatic therapy, and one patient died from liver failure before any specific treatment could be initiated. Eleven of 13 TIPS patients required 2.5 ± 2.4 revisions (range: 0-8). One patient died from his underlying hematologic disease. The residual 12 patients still have stable liver function not requiring OLT. All 4 patients who underwent OLT as initial treatment, required re-OLT due to thrombembolic complications of the graft. Survival in the TIPS group was 92.3% and in the OLT group 75% during a median follow-up of 4 and 11.5 years, respectively.</p> <p>Conclusion</p> <p>Our results confirm the role of TIPS in the management of patients with acute, subacute and chronic BCS. The limited number of patients with OLT does not allow to draw a meaningful conclusion. However, the underlying disease may generate major complications, a reason why OLT should be limited to patients who cannot be managed by TIPS.</p

    Boron Stress Responsive MicroRNAs and Their Targets in Barley

    Get PDF
    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress

    Urbanization in Iron Age Europe:Trajectories, patterns, and social dynamics

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore