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The accurate representation of multidimensional potential energy surfaces is a necessary requirement
for realistic computer simulations of molecular systems. The continued increase in computer power
accompanied by advances in correlated electronic structure methods nowadays enables routine cal-
culations of accurate interaction energies for small systems, which can then be used as references
for the development of analytical potential energy functions (PEFs) rigorously derived from many-
body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here
the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian
approximation potentials (GAPs) in representing water two-body and three-body interaction ener-
gies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and
GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar
levels of accuracy in reproducing both two-body and three-body reference data as well as interaction
energies of small water clusters obtained from calculations carried out at the coupled cluster level
of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy
between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol,
that are physically sound and transferable, and machine-learning techniques that provide a flexible
framework to approximate the short-range interaction energy terms. Published by AIP Publishing.
https://doi.org/10.1063/1.5024577

I. INTRODUCTION

Since the first Monte Carlo (MC)1,2 and molecular dynam-
ics (MD)3,4 simulations of molecular systems, computer sim-
ulations have become a powerful tool for molecular sciences,
complementing experimental measurements and often pro-
viding insights that are difficult to obtain by other means.
Although the first simulations were performed for idealized
molecular systems, it was recognized since the beginning that
both realism and predictive power of a computer simulation are
directly correlated with the accuracy with which the underlying
molecular interactions are described.

In this context, computer modeling of water is perhaps
the most classic example. Given its role as life’s matrix,5 it
is not surprising that numerous molecular models of water
have been developed (see Refs. 6–9 for recent reviews) since

a)Electronic mail: fpaesani@ucsd.edu

the first simulations performed by Barker and Watts,10 and
Rahman and Stillinger.11 However, despite almost 50 years
have passed since these pioneering studies, the development
of a molecular model that correctly reproduces the behavior
of water from the gas to the condensed phase still represents a
formidable challenge.

From a theoretical standpoint, the energy of a system con-
taining N water molecules can be formally expressed through
the many-body expansion (MBE) of the interaction energy as12

EN(1, . . . , N) =
N∑

i=1

V1B(i) +
N∑

i<j

V2B(i, j)

+
N∑

i<j<k

V3B(i, j, k) + · · · + VNB(1, . . . , N), (1)

where V1B(i) = E(i) � Eeq(i) corresponds to the one-body
(1B) energy required to deform an individual water molecule
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(monomer) from its equilibrium geometry. All higher-order
terms VnB in Eq. (1) describe n-body (nB) interactions defined
recursively as

VnB(1, . . . , n) = En(1, . . . , n)−
∑

i

V1B(i)−
∑
i<j

V2B(i, j) − · · ·

−
∑

i<j< · · ·<n−1

V (n-1)B(i, j, . . . , (n − 1)). (2)

Most popular molecular models of water are pairwise addi-
tive [i.e., they truncate Eq. (1) at the two-body (2B) term]
and use an effective V2B to account for many-body contri-
butions in an empirical fashion.13–24 Although in the early
times of computer simulations this simplification was a neces-
sity dictated by computational efficiency, the importance of
many-body effects in water was already recognized in the
1950s by Frank and Wen who introduced a molecular model
of liquid water consisting of “flickering clusters of hydrogen-
bonded molecules,” emphasizing the “co-operative nature”
of hydrogen bonding.25 It also became soon apparent that
“pair potentials do not realistically reproduce both gas and
condensed phase water properties.”26 The first attempts to
derive potential energy functions (PEFs) for aqueous sys-
tems which could rigorously represent the individual terms
of the MBE were made in the late 1970s and 1980s.27–32

In particular, Clementi and co-workers developed a series of
analytical PEFs for water which were fitted to ab initio refer-
ence data obtained at the fourth-order Møller-Plesset (MP4)
and Hartree-Fock levels of theory for the 2B and three-body
(3B) terms, respectively, and represented many-body effects
through a classical polarization term.31,32 Stillinger and David
developed a polarizable model for water in which H+ and O2�

moieties were considered as the basic dynamical and structural
elements.33 Building upon these pioneering studies, several
polarizable models have been proposed over the years, most
notably the Dang-Chang model,34 the TTM models,35–40 and
AMOEBA.41,42 The interested reader is referred to Refs. 8
and 9 for recent reviews. Finally, in recent years, also machine
learning (ML) potentials have been applied to water,43,44

which are able to include high order many body terms in
the PEFs in the form of structural descriptions of the atomic
environments.

The development of efficient algorithms for correlated
electronic structure methods along with continued improve-
ments in computer performance has recently made it possi-
ble to evaluate the individual terms of Eq. (1), with chem-
ical accuracy. In parallel, tremendous progress has been
made in constructing multidimensional mathematical func-
tions that are capable to reproduce interaction energies in
generic N-molecule systems, with high fidelity.43,45,46

By combining these three approaches, it has been realized
that the MBE provides a rigorous and efficient framework for
the development of full-dimensional PEFs entirely from first
principles, in which low-order terms are accurately determined
from correlated electronic structure data, e.g., using coupled
cluster theory with single, double, and perturbative triple exci-
tations, CCSD(T), in the complete basis set, CBS, limit, the
current “gold standard” for chemical accuracy, and higher-
order terms are represented by classical many-body induction.

Along these lines, several many-body PEFs for water have
been proposed in the last decade, the most notable of which
are CC-pol,47 WHBB,48 HBB2-pol,49 and MB-pol.50–52 When
employed in computer simulations that allow for explicit treat-
ment of nuclear quantum effects, these many-body PEFs have
been shown to correctly predict structural, thermodynamic,
dynamical, and spectroscopic properties of water, from the
dimer in the gas phase to liquid water and ice (see Ref. 9 for a
recent review).

Among the existing many-body PEFs, MB-pol [permu-
tationally invariant polynomial (PIP)-MB-pol in the present
nomenclature] has been shown to correctly predict the prop-
erties of water across different phases,53 reproducing the
vibration-rotation tunneling spectrum of the water dimer,50 the
energetics, quantum equilibria, and infrared spectra of small
clusters,51,54–56 the structural, thermodynamic, and dynami-
cal properties of liquid water,57,58 including subtle quantum
effects such as equilibrium isotope fractionation,59 the ener-
getics of the ice phases,60 the infrared and Raman spectra of
liquid water,61,62 the sum-frequency generation spectrum of
the air/water interface at ambient conditions,63 and the infrared
and Raman spectra of ice Ih.64 It has been shown that the accu-
racy of PIP-MB-pol in reproducing the properties of water
depends primarily on its ability to correctly represent each
individual term of the MBE at both short- and long-range.

Briefly, within MB-pol, V1B in Eq. (1) is represented by
the 1B PEF developed by Partridge and Schwenke,65 which
reproduces intramolecular distortion with spectroscopic accu-
racy. V2B includes a term describing 2B dispersion, which
is derived from the asymptotic expansion of the interaction
energy, as well as a term describing electrostatic interac-
tions associated with both permanent and induced molecular
moments. At short-range, within the original PIP-MB-pol,
V2B is supplemented by a 4th-degree permutationally invariant
polynomial (PIP)45 that smoothly switches to zero as the dis-
tance between the two oxygen atoms in the dimer approaches
6.5 Å.50 Similarly, V3B includes a 3B induction term that is
supplemented by a short-range 4th-degree PIP that smoothly
switches to zero once the oxygen-oxygen distance between
two pairs of water molecules within the trimer approaches
4.5 Å.51 All higher-body terms are implicitly represented by
classical many-body induction according to a modified Thole-
type scheme originally adopted by the TTM4-F water model.40

The PIP 2B and 3B terms, which were derived from CCSD(T)
calculations carried out in the complete basis set limit for large
sets of water dimers and trimers, correct for deficiencies asso-
ciated with a purely classical description of intermolecular
interactions by effectively representing quantum-mechanical
interactions that arise from the overlap of the monomer elec-
tron densities (e.g., charge transfer and penetration, and Pauli
repulsion).

In this study, we investigate the application of Behler-
Parrinello neural networks66,67 (BPNNs) and Gaussian
approximation potentials (GAPs) as alternatives for the orig-
inal PIP representations of MB-pol short-range 2B and 3B
terms. Using the same training, validation, and test sets, two
additional (BPNN- and GAP-based) analytical expressions
of MB-pol are derived, which effectively exhibit the same
accuracy as the original, PIP-based expression. This study
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provides further evidence for the ability of the MBE in combi-
nation with machine learning techniques to serve as a rigorous
and efficient route for the development of accurate poten-
tial energy functions such as MB-pol in the case of water.
The article is organized as follows: In Sec. II, we provide an
overview of the computational framework associated with the
many-body formalism adopted by MB-pol, while in Sec. III
we describe the three different models (PIP-MB-pol, BPNN-
MB-pol, and GAP-MB-pol) used to represent water two-
body and three-body interactions. The results are presented in
Sec. IV, and the conclusions along with an outlook are given in
Sec. V.

II. MB-POL FUNCTIONAL FORM
AND COMPUTATIONAL DETAILS

We are employing the MB-pol framework for water, which
is based on the MBE of Eq. (1) and contains explicit terms
for the 1B, 2B, and 3B terms, in combination with classical
N-body polarization that accounts for all higher-body contri-
butions to the interaction energy.50,51 In MB-pol, the 2B term
is divided into long-range interactions that are well described
using classical expressions for electrostatics, induction, and
dispersion, and short-range interactions that include complex
quantum-mechanical effects due to the overlap of the monomer
electron densities,

V2B(i, j) = V2B
short(i, j) + V2B

long(i, j) (3)

with

V2B
long(i, j) = V2B

TTM,elec(i, j) + V2B
TTM,ind(i, j) + V2B

disp(i, j), (4)

where V2B
TTM,elec and V2B

TTM,ind are electrostatic and induction
energies, respectively, represented by a slightly modified ver-
sion of the Thole-type TTM4-F model40,50,51 and the disper-
sion energy V2B

disp is modeled by a C6 term that is dampened at

short range.50 Similarly, the 3B term in MB-pol is decomposed
into classical 3B induction that captures essentially all of the
3B interaction energy at long range and an expression for the
highly complex interactions at short range,

V3B(i, j, k) = V3B
short(i, j, k) + V3B

TTM,ind(i, j, k). (5)

Because corrections to the underlying classical baseline poten-
tials V2B

long and V3B
long = V3B

TTM,ind are only required at short range,
and in order to obtain a smooth, differentiable potential energy
surface, MB-pol employs switching functions that smoothly
turn off the short-range potentials V2B

short and V3B
short once the

separation between the oxygen atoms of the water molecules
exceeds a preset cutoff.

The MB-pol short-range 2B and 3B potentials50,51 are
written as

V2B
short(i, j) = s(i, j)V2B

ML(i, j) (6)

and

V3B
short(i, j, k) = s(i, j, k)V3B

ML(i, j, k), (7)

where

s(i, j, k) = s(i, j)s(i, k) + s(i, j)s(j, k) + s(i, k)s(j, k). (8)

The switching function was chosen as

s(i, j) =




1 if tij < 0

cos2
(
π
2 tij

)
if 0 ≤ tij < 1

0 if 1 ≤ tij

, (9)

where

tij =
ROO

ij − Rlow

Rhigh − Rlow
(10)

is a scaled and shifted oxygen-oxygen distance for water
molecules i and j. The MB-pol 2B and 3B cutoff values are
R2B

low = 4.5 Å, R2B
high = 6.5 Å, R3B

low = 0.0 Å, and R3B
high = 4.5 Å.

An accurate description of both the 2B and the 3B short-
range interactions requires flexible multi-dimensional func-
tions, for which the original PIP-MB-pol model employs per-
mutationally invariant polynomials45,68 (PIPs). In this work,
we investigate the performance of alternative machine learn-
ing (ML) frameworks to represent these 2B and 3B short-range
interactions in water, by comparing PIPs to Behler-Parrinello
neural networks (BPNNs) and Gaussian approximation poten-
tials (GAPs) for V2B

ML and V3B
ML. We employ the original MB-pol

switching functions and cutoff values with the PIP and BPNN
potentials, while GAP uses slightly different cutoff values and
switching functions.69 In the context of MBE and neural net-
works, it should be noted that a neural network representation
of the many-body expansion of the interaction energy, trun-
cated at the 3B term, has been reported for methanol.70 Neural
networks and Gaussian process regression (GPR) have very
recently been compared for a highly accurate representation
of the potential energy surface of formaldehyde.71

A. Training sets and reference energies

We employ the original MB-pol 2B and 3B data sets,50,51

which sample regions of the 2B and 3B water PES, respec-
tively, that are most relevant for simulations of water at nor-
mal to moderate temperature and pressure. As described in
Ref. 50, the 2B training set consists of 42508 water dimer
structures with center-of-mass separations ranging from 1.6 to
8 Å that include the global dimer minimum geometry, several
saddle points, compressed geometries with positive interac-
tion energies, and dimers extracted from path-integral molec-
ular dynamics (PIMD) simulations of liquid water carried
out at ambient temperature and pressure with the HBB2-pol
PEF.49 Similarly, the 3B training set contains 12347 water
trimer structures that include the global minimum and trimers
extracted from a range of MD and PIMD simulations of small
water clusters, liquid water, and water ice phases at varying
temperatures and pressures carried out with the HBB2-pol
PEF.49 Both the 2B and the 3B quantum mechanical (QM) ref-
erence energies of these data sets were obtained at the complete
basis set (CBS) limit of coupled cluster theory with single,
double, and iterative triple excitations, CCSD(T). For details
see the original publications.50,51 The short-range training set
energies V ref

short employed in this work were obtained from the
QM reference data by subtracting the MB-pol baseline long-
range 2B and 3B potentials V2B

long and V3B
TTM,ind, respectively.

The original 2B dataset includes a few dimer structures
with extremely high binding energy. Those high energy struc-
tures are not only physically unimportant but also sparsely



241725-4 Nguyen et al. J. Chem. Phys. 148, 241725 (2018)

distributed, which can lead to difficulties for machine learn-
ing techniques to make effective predictions for structures in
this regime because of insufficient information. Therefore, we
have retained only configurations with binding energies below
60 kcal/mol in this work. In addition, we have removed all
configurations with oxygen-oxygen separations larger than the
MB-pol 2B short-range cutoff of 6.5 Å, leading to a total of
42069 configurations in the final 2B training set. By contrast,
the trimer dataset with 12347 configurations is fully employed.
Each dataset is then randomly divided into three separate sets,
training, validation, and test sets with a ratio of 0.81:0.09:0.1.
The first two are used during training and for model selec-
tion, while the last one is kept completely isolated from the
training procedure and is employed for the final evaluation
only.

B. Water cluster test sets

Reference interaction energies of (H2O)n clusters with
n = 4–6 (see Fig. 4) are based on geometries optimized with
MP2 and RI-MP272,73 and were taken from Ref. 58. The ener-
gies were obtained using the MBE of the interaction energy74

with both 2B and 3B interaction energies computed at the
same level as the MB-pol 2B and 3B training sets,50,51 that is,
effectively at the CBS limit of CCSD(T). All higher order con-
tributions to the interaction energy (>3B) were obtained from
explicitly correlated CCSD(T)-F12b75 calculations with the
VTZ-F12 basis set,76 which yields results close to the CBS.

III. MANY-BODY MODELS
A. Permutationally invariant polynomials

The permutationally invariant polynomials are functions
of the distances between pairs involving both the physical
atoms (H and O) and two additional sites L1 and L2 that are
located symmetrically along the directions of the oxygen lone
pairs of a water molecule,

r(±)
L = rO +

1
2
γ‖(rOH1 + rOH2 ) ± γ⊥(rOH1 × rOH2 ), (11)

where γ || and γ⊥ are fitting parameters and rOH1,2 are
the O-H bond vectors. Exponential functions of the type
ξi = e−kdi or ξi = e−k(di−d(0)) and Coulomb-type functions
ξCoul

i = e−kdi/di are built for the set {di} of these distances
and are used as basis for the PIPs. The PIP VML,PIP =

∑
l clηl

is then constructed from the set {ξ i} of these functions, where
{ηl} are symmetrized monomials up to a given degree. The
symmetrization is carried out such that the monomials, and
hence the PIP, are invariant with respect to the permutations of
the water molecules as well as to the permutations of equiv-
alent H and L sites within each molecule. The polynomial
coefficients cl and the exponential coefficients k and distances
d(0) are linear and non-linear fitting parameters, respectively.
For details, see the original publications.50,51

For the 2B PIP, we are using 31 basis functions: 6 expo-
nential functions for all intra-molecular HH and OH pairs
with exponential coefficients kintra

HH and kintra
OH ; 9 Coulomb-type

functions for all inter-molecular HH, OH, and OO pairs with
exponential coefficients kinter

HH , kinter
OH , and kinter

OO ; 16 exponential

functions for all inter-molecular LH, LO, and LL pairs with
exponential coefficients kinter

LH , kinter
LO , and kinter

LL . A total of 1153
symmetrized monomials form V2B

ML,PIP: 6 first-degree monomi-
als using only intermolecular ξ i variables, 63 second-degree
monomials with at most a linear dependence on intramolecular
variables, 491 third-degree ones containing at most quadratic
intramolecular variables, 593 fourth-degree terms involving
only quadratic intramolecular variables, as in the original
paper.50

For the 3B PIP, we are using 36 exponential functions for
each of the intra- and inter-molecular distances between all
real (O and H) atoms with exponential coefficients and dis-
tances kintra

HH , kintra
OH , kinter

HH , kinter
OH , kinter

OO , dintra,(0)
HH , dintra,(0)

OH , dinter,(0)
HH ,

dinter,(0)
OH , and dinter,(0)

OO . A total of 1163 symmetrized monomials
form V3B

ML,PIP: 13 second-degree monomials with only inter-
molecular exponential variables, 202 third-degree monomials
with at most a linear dependence on intramolecular variables,
and 948 fourth-degree monomials containing at most a linear
dependence on intramolecular variables or intermolecular ones
involving oxygen-oxygen and hydrogen-hydrogen distances,
as in the original paper.51 By construction the PIP method
provides analytical forces.

The linear and nonlinear parameters were optimized using
a singular value decomposition and the simplex algorithm,
respectively, by minimizing the regularized sum of squared
errors χ2 for the corresponding training set S, commonly
referred to as Tikhonov regularization or ridge regression,77

χ2 =
∑
n∈S

[Vshort(n) − V ref
short(n)]2 + Γ2

∑
l

c2
l . (12)

The regularization parameter Γ was set to 5 × 10�4 for 2B
and 1 × 10�4 for 3B in order to reduce the variation of the
linear parameters without spoiling the overall accuracy of the
fits. The training time required approximately 48 central pro-
cessing unit (CPU) core hours for the 2B fit and 24 CPU core
hours for the 3B fit using a 24-core Intel Xeon Platinum 8160
(Skylake) CPU.

B. Behler-Parrinello neural networks

Based on the assumption that the total energy of a sys-
tem can be written as a sum of atomic energy contributions, a
BPNN consists of a set of fully connected feed-forward neu-
ral networks, each of which provides an atomic energy.66,67

Each atomic network takes as its input a set of atom-centered
symmetry functions78 that encode the atomic positions and
at the same time are invariant with respect to overall rota-
tion and translation, as well as to permutations of like atoms.
The invariance of the total energy is assured by enforcing that
all atomic networks of the same species are identical, thus
having the same structure and weights. As a result, for the
water systems considered here, there are two sub-networks,
one for all H atoms and the other for all O atoms, which need
to be trained simultaneously. Aiming at smoothly disabling
the short-range interaction energy contribution at long dis-
tances, described in Eqs. (6) and (7), the sum of all atomic
energies from the last layer of the sub-networks is multiplied
by the switching function to produce a final output for a BPNN.
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The network weights are determined with respect to the val-
ues of the reference short-range interaction energies. From the
analytical expression of the energy, the forces can be derived
accordingly.

The following modified radial and angular symmetry
functions, which lack the cutoff functions of the original BPNN
approach, have been chosen for each atom i:

Grad
i =

∑
j,i

e−η(Rij−Rs)2
, (13)

Gang
i = 21−ζ

∑
j,i

∑
k,i,j

(1 + λ cos θijk)ζe−η
′(Rij+Rik+Rjk )2

, (14)

resulting in an input vector Gi = {G
rad/ang
i } for the atomic

network. θijk denotes the angle enclosed by two interatomic
distances Rij and Rik . Each summation above takes into account
only same combination of atomic species and the set of param-
eters, {(η, Rs)} and {(ζ , λ, η ′)}, is the same for each type
of species grouping. We have removed the cutoff function
from the original forms of the symmetry functions used in
Refs. 66 and 67 since we apply the MB-pol 2B and 3B switch-
ing functions, thus never feeding any structures to the 2B and
3B BPNNs that are beyond the cutoff region.

The dimension of the input vector should reflect a balance
between giving an effective resolution of the local environment
and the computational cost of training and inference with a
large input vector neural network. After carefully examining
different parameter sets, we have come up with the final set
as follows. For the 2B term, there are 24 radial Gaussian-
shape filters, Eq. (13), whose centers Rs are placed evenly
between 0.8 Å and 8 Å, which are relatively close to the
smallest and the largest interatomic distances in the training
set. For O–O distances, the two smallest centers are excluded
because the O–O separation is well beyond the space covered
by these two filters. The width of those filters is proportional
to their centers’ position, 1/

√
2η = 0.2Rs. The angular probe

in Eq. (14) takes ζ = [1, 4, 16] for different filter widths,
λ = ±1 for switching the filter’s center between 0 and π, and
η ′ = [0.001, 0.01, 0.05] (Å�2) for various levels of the sep-
aration dependence. As for 3B BPNNs, a similar scheme is
applied with few adjustments, which include 16 radial filters
with centers arranged in the same range, between 0.8 Å and
8 Å, and two levels of separation dependence attached to the
angular filter, η ′ = [0.001, 0.03] (Å�2). Moreover, to reduce
the redundancy and computational cost, for the angular probe
for hydrogen atoms, we consider only two types of triplet of
atoms, a hydrogen atom with other two hydrogen atoms or
with an oxygen atom and another hydrogen atom. In total, a
set of 82 and 84 symmetry functions for O and H is formed for
the 2B BPNN while another set of 66 and 56 functions for O
and H is used for the 3B BPNN. The complete set of the sym-
metry function parameters can be found in the supplementary
material.

The neural network training encounters various hyperpa-
rameters and different techniques for initialization of these
parameters, which are mostly found by trial and error. Follow-
ing is our final network architecture and setup for the network
training. The atomic network consists of one input layer, three
hidden layers, and one single output layer. The input layer

takes as its input the preprocessed symmetry functions, each of
which is obtained by rescaling the symmetry function with its
corresponding maximum value in the training and validation
sets. Furthermore, the numbers of units in each hidden layer
are chosen to be the same for both atomic networks for O and
H. Overall, with 34 and 22 units per hidden layer, the final 2B
and 3B BPNN models contain 10542 and 4798 weight and
bias parameters, respectively. For the continuity of the energy
functional, the activation function for each unit is chosen to be
a hyperbolic tangent for the hidden layers and a linear function
for the output layer. Besides, the reference energies for the 2B
training are converted to energy per atom in eV unit so that
the network targets a similar range of values as given by the
activation functions.

We build the network models using Keras79 with Theano80

backend and choose the Adam optimizer with a batch
size of 64 for training. The Nguyen-Widrow method81

is employed to initialize the network weights and biases.
For a stable and effective training, the optimization pro-
cess is continuously carried out five times with descending
starting learning rates

[
10−3, 2 · 10−4, 6 · 10−5, 9 · 10−6, 10−6

]

and corresponding numbers of iterations, or epochs,
[1500, 1500, 1000, 1000, 1000]. Furthermore, we apply an
additional decay rate α = 10�5 to each learning rate such that
at a given epoch k the leaning rate is lrk�1/(1 + α·k) based on
the value at the previous epoch lrk�1. The training is to opti-
mize the mean squared error of the modeled energies compared
to the reference data in the training set. To avoid overfitting,
on each epoch, the quality of the model is monitored on the
validation set such that only the model that gives the highest
accuracy over this set is ultimately kept. Finally, the trained
model is then evaluated on the test set to quantify its capability
of generalization to unseen data. For the systems considered
here, the training processes generally take 3 hours and 1 hour
on a Tesla K40 GPU with the GPU-accelerated cuDNN library
for 2B and 3B sets, respectively.

C. Gaussian approximation potentials

The Gaussian Approximation Potential (GAP)82,83 frame-
work, available in the QUIP program package,84 is an imple-
mentation of Gaussian process regression (GPR) interpolation
for the atomic energy as a function of the geometry of the
neighbouring atoms. The functional form representing a func-
tion f that is to be interpolated is identical to that of kernel
ridge regression,

f (R) =
∑

k

bkK(R, Rk), (15)

where the high dimensional vector R represents the complete
geometry of neighbouring atoms, k indexes a set of represen-
tative data points {Rk}, K is the kernel function, and {bk} are
fitting coefficients. In the GPR formalism, K corresponds to an
estimate of the covariance of the unknown function, and the lin-
ear system is solved in the least-squares sense using Tikhonov
regularisation, but the regularisation parameters are now inter-
preted as estimates of data and model error. In the present case,
the regularisation was chosen to be 0.00115 kcal/mol for the
2B term and 0.0231 kcal/mol for the 3B term after manual
exploration of the data.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-025891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-025891
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The success of the GAP fit depends on choosing an appro-
priate kernel, one that captures the structure of the input data
and as much as possible about the function to be fitted. Here
we use the “Smooth Overlap of Atomic Positions” (SOAP), a
kernel that is the rotationally integrated overlap of the neigh-
bour densities, which was shown to be equivalent to the scalar
product of the spherical Fourier spectrum.83 The atomic envi-
ronment of atom i is described by a set of neighbour densities,
one for each atomic species, which are represented as the
sum of Gaussians each centred on one of the neighbouring
atoms j,85

ραi (r) =
∑

j

exp
(
−
|r − rij |

2

2σ2
at

)
fcut(rij), (16)

where j ranges over neighbours with atomic species α, rij are
the positions relative to i, andσ2

at is a smoothing parameter. We
included the switching function fcut which smoothly goes to
zero beyond a specified radial value. This local atomic neigh-
bour density can be expanded in terms of spherical harmonics,
Ylm(r̂), and orthogonal radial functions, gn(|r|),

ραi (r) =
∑
nlm

cαnlmgn(|r|)Ylm(r̂). (17)

The expansion coefficients are then combined to form the
rotationally invariant power spectrum,

pαβn1n2l(Ri) = π

√
8

2l + 1

∑
m

(cαn1lm)†(cβn2lm), (18)

where we have emphasized the functional dependence on the
complete neighbour geometry. The complete SOAP kernel can
be written as

K(R, R′) =
( ∑
αβn1n2l

pαβn1n2l(R)pαβn1n2l(R
′)
)ζ

, (19)

where we have allowed for a small integer exponent ζ (here
set to 2). The kernel is also normalised so that the kernel of
each environment with itself is unity. Separate fits are made
to the atomic energy function corresponding to each atomic
species taken as the center of an atomic environment. The key
free parameters are the radial cutoff in f cut and the smooth-
ing parameter σat. In the present cases here, atomic energy
functions are represented by the sum of two kernels,86 one
with a smaller radial cutoff (4.5 Å) and smaller smoothing
(0.4 Å) and one with a larger cutoff (6.5 Å for the 2B and
7.0 Å for the 3B fit) and larger smoothing (1.0 Å). The root
mean squared error (RMSE) is only weakly sensitive to these,
and some manual optimisation was carried out. Each fit uses
10 radial basis functions and a spherical harmonics basis band
limit of 10. The representative environments for the fit are cho-
sen using CUR matrix decomposition.87 The number of repre-
sentative points are 9000 in the 2B fit and 10000 in the 3B fit.
The full command lines of the fits are given in the supplemen-
tary material. Training of the GAP models required 150 CPU
core hours for the 2B model and 64 CPU core hours for the
3B model on 16-core Intel Xeon E7-4820 (Westmere) and

Intel Xeon E5-2670 (Sandy Bridge) CPUs, respectively. Note
that although formally the GAP construction corresponds to a
decomposition of the total energy into atomic energies, similar
to BPNN above, the cutoffs are sufficiently large to encom-
pass all atoms in the water dimer and trimers in the dataset,
and therefore the decomposition does not represent an approx-
imation. Similar to PIP and BPNN, GAP provides analytical
forces.

IV. RESULTS
A. 2B and 3B interactions and the structure
of the training data

The root mean squared errors (RMSEs) obtained with
PIPs, BPNNs, and GAPs for the 2B and 3B datasets are
reported in Table I. For the 2B term, all three methods achieve
similar accuracy: the error on the training set is less than
0.050 kcal/mol per dimer, while the errors on validation
and test sets are less than 0.080 kcal/mol per dimer. These
errors demonstrate a high level of accuracy since the aver-
age value of the target energies in the dataset is 3 kcal/mol.
Among the three, the 2B PIP model appears to perform better
on the validation and test sets and suffers less from over-
fitting. The difference in RMSEs for the training set and
the test set is below 0.02 kcal/mol with PIP, but around
0.03 kcal/mol with BPNN and 0.04 kcal/mol with GAP. The
GAP model gets a slightly lower error for the training set, but
overfitting prevents to achieve a similar accuracy for the test
set.

In order to investigate in more detail the performance of
the different regression schemes for predicting the 2B and 3B
energies over the MB-pol dimer and trimer data sets, we used
a dimensionality reduction scheme to obtain a 2D representa-
tion of the structure of the train set. We followed a procedure
similar to that used in Ref. 88 to map a database of oligopep-
tide conformers. A metric based on SOAP descriptors85 was
used to assess the similarity between reference conformations
of dimers or trimers. A 2D map that best preserved the similar-
ity between 1000 reference configurations selected by farthest
point sampling89 was obtained using the sketch-map algo-
rithm.90,91 All other configurations (training and testing) were
then assigned 2D coordinates (xi, yi) by projecting them on
the same reference sketch-map. We could then compute the
histogram of configurations h(x, y) and the averages of the
properties of the different configurations and of the test RMSE
for the various methods, conditional on the position on the 2D
map, e.g.,

TABLE I. RMSE (in kcal/mol) per isomer on the provided training, valida-
tion, and test sets in the PIP, BPNN, and GAP short range interaction two-body
(2B) and three-body (3B) energy fitting.

2B 3B

Training Validation Test Training Validation Test

PIP 0.0349 0.0449 0.0494 0.0262 0.0463 0.0465
BPNN 0.0493 0.0784 0.0792 0.0318 0.0658 0.0634
GAP 0.0176 0.0441 0.0539 0.0052 0.0514 0.0517

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-025891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-025891
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FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = 〈δ(x − xi)δ(y − yi)〉 ,

V2B
short(x, y) =

〈
V2B

short(i)δ(x − xi)δ(y − yi)
〉

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ≈ 0.05 kcal/mol),
followed closely by BPNN (RMSE ≈ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.
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FIG. 3. (a) Sketch-map representation
for the training data set for trimer config-
urations. Points are colored according
to the root mean square of the three
O–O distances; trimer geometries are
also represented as triangles, together
with a few structures for which a snap-
shot is shown. (b) Histogram of the
training point positions on the sketch-
map. The train set density is also
reported on other plots as a reference for
comparison. (c) Conditional average of
the 3B energies for different parts of the
train set. [(d)–(f)] Conditional average
RMSE for the PIP, BPNN, and GAP fits
of the 3B energy in different parts of the
test set.

FIG. 4. Isomers of water clusters
(H2O)n, n = 4, 5, 6, used for the
analysis of the performance of PIP,
BPNN, and GAP representations of
2B and 3B energies. Reproduced with
permission from Reddy et al., J. Chem.
Phys. 145, 194504 (2016). Copyright
2016 AIP Publishing LLC.
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FIG. 5. Errors (in kcal/mol) in the
2B and 3B interaction energies calcu-
lated with PIP, BPNN, and GAP short-
range potentials with respect to refer-
ence CCSD(T) values for water clusters
(H2O)n, n = 4, 5, 6.

the case of 2B energy contributions, an analysis of the error
distribution shows that improving the sampling density and
uniformity for the train set is likely to be the most effective
strategy to further improve the model. Errors are concentrated
at the periphery of the data set. The good performance of the
GAP model can be traced to the fact that it provides a very
good description of the short RMS dOO region, even if only a
few reference structures are available, even though it performs
less well than PIP or NN for configurations that involve far
away molecules.

B. Water clusters

Isomers of water clusters (H2O)n with n = 4, 5, 6 (see
Fig. 4 for the structures) serve as larger test systems to inves-
tigate the performance of MB-pol with PIP, BPNN, and GAP
representations of the short-range 2B and 3B energies and the
corresponding effect on the total interaction energies of the
clusters.

An analysis of the 2B and 3B contributions to the total
interaction energy of the water clusters is shown in Fig. 5.
MB-pol errors with respect to the CCSD(T) reference values
are smaller than 0.3 kcal/mol in all cases, independent of the

cluster size and geometry and independent of the approach that
is used to represent the short-range 2B and 3B energies. The
errors increase somewhat with cluster size as the individual
errors for the larger number of 2B and 3B terms can start to
add up for cluster configurations that contain repeating dimer
and trimer units. This is mostly pronounced for 2B interaction
energies. While similar errors in 2B interaction energies are
seen with the three potentials, GAP-MB-pol exhibits smaller
errors in 3B interaction energies than PIP-MB-pol and BPNN-
MB-pol.

Figure 6 compares the total interaction energies of all
water cluster isomers as obtained with MB-pol using PIP,
BPNN, and GAP representations of short-range 2B and 3B
energies in comparison to the CCSD(T)/CCSD(T)-F12b ref-
erence values. In correspondence with the 2B and 3B contri-
butions, the error in the total interaction energy increases with
cluster size. Due to extended hydrogen bonding and symme-
try, the ring-type isomers also have relatively large higher-body
contributions that can be non-negligible and that can exhibit
errors of similar magnitude as the 2B and 3B terms as has
been shown in previous work.58,93 The error for this type of
isomers is thus particularly large. However, the deviation in
the computed interaction energies never exceeds 0.8 kcal/mol

FIG. 6. Interaction energies of the low-lying isomers of water clusters (H2O)n, n = 4, 5, 6, obtained using MB-pol with PIP, BPNN, and GAP short-range 2B
and 3B potentials in comparison to CCSD(T)/CCSD(T)-F12b reference values.
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and, most importantly, the relative order of the total inter-
action energies for the different isomers of each cluster is
retained in all cases. Overall we conclude that any of the
investigated approaches to represent short-range 2B and 3B
interaction energies within the MB-pol model is suitable to
predict accurate interaction energies of water clusters.

V. CONCLUSIONS

We have explored different representations of MB-pol
short-range two-body (2B) and three-body (3B) interaction
energies using permutationally invariant polynomials (PIP),
Behler-Parrinello neural networks (BPNNs), and Gaussian
approximation potentials (GAPs). Any of these models can
be trained within a few hours on a single state-of-the-art
compute node. The accuracy of the three models has been
assessed by comparing their ability to reproduce large datasets
of CCSD(T)/CBS 2B and 3B interaction energies as well as
in predicting the energetics of small water clusters, which are
always found to be within chemical accuracy (1 kcal/mol).
These results demonstrate that the three models are effectively
equivalent, consistently exhibiting similar performance in rep-
resenting many-body interactions in water within the MB-pol
framework. The most promising approach to further increase
the accuracy for both the 2B and 3B terms involves increas-
ing the number of reference calculations and optimizing the
training set to cover more uniformly the relevant configura-
tion space. Our analysis of the 2B and 3B contributions to the
MB-pol interaction energies can be taken as a case study for
the general problem of the systematic construction of poten-
tials derived from the many-body expansion. The combination
between an accurate machine-learning representation of the
short-range terms in combination with a physically sound form
of long-range contributions provides a promising route to the
development of accurate, efficient, and transferable potential
energy surfaces.

SUPPLEMENTARY MATERIAL

See supplementary material for the following: the list of
parameters for the symmetry functions used in BPNN-MB-
pol, an example of the command line necessary to generate the
GAP fit in QUIP, interaction energies for the water hexamer
isomers analyzed in Figs. 5 and 6 whose Cartesian coordinates
are given in Ref. 58, and a code to compute the short-range 2B
and 3B interaction energies of BPNN-MB-pol.
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